
21

Approximate Graph Clustering for Program Characterization

JOHN DEMME and SIMHA SETHUMADHAVAN, Columbia University

An important aspect of system optimization research is the discovery of program traits or behaviors. In this
paper, we present an automated method of program characterization which is able to examine and cluster
program graphs, i.e., dynamic data graphs or control flow graphs. Our novel approximate graph clustering
technology allows users to find groups of program fragments which contain similar code idioms or patterns
in data reuse, control flow, and context. Patterns of this nature have several potential applications including
development of new static or dynamic optimizations to be implemented in software or in hardware.

For the SPEC CPU 2006 suite of benchmarks, our results show that approximate graph clustering is
effective at grouping behaviorally similar functions. Graph based clustering also produces clusters that
are more homogeneous than previously proposed non-graph based clustering methods. Further qualitative
analysis of the clustered functions shows that our approach is also able to identify some frequent unexploited
program behaviors. These results suggest that our approximate graph clustering methods could be very
useful for program characterization.

Categories and Subject Descriptors: D.3.4 [Programming Languages]: Processors—Optimization

General Terms: Design, Algorithms, Performance

ACM Reference Format:
Demme, J. and Sethumadhavan, S. 2012. Approximate graph clustering for program characterization. ACM
Trans. Architec. Code Optim. 8, 4, Article 21 (January 2012), 21 pages.
DOI = 10.1145/2086696.2086700 http://doi.acm.org/10.1145/2086696.2086700

1. INTRODUCTION

Identifying interesting program execution behaviors is important for creating opti-
mized, secure systems. Today, program characterization is a laborious and increas-
ingly time consuming process due to a combination of factors including the growth in
number of applications, the wide variety of platforms these applications run on, and
difficulty in the characterization process. To see some of the challenges in program
characterization consider the case of SPEC benchmarks. Figure 1 plots the number
of functions responsible for a certain fraction of the execution time. For example, five
functions from each SPEC INT benchmark (of which there are 11), contribute to, on av-
erage, 67% of execution time. If SPEC FP is examined as well, the number of functions
grows from 55 to 135. In fact, examining all of the functions in SPEC responsible for
any non-trivial amount of execution time (at least 1%) requires characterizing about
300 functions comprising about 14,000 lines of code. This is a significant amount of code
but is still small in comparison to real-life codes. The last data set shown in figure 1 is
coverage data from the V8 Javascript Engine, a production library used in the Chrome
web browser. The V8 profiling data indicate that the amount of code that must be

The research that was conducted at CASTL was funded by grants from DARPA, AFRL (FA8750-10-2-0253,
FA9950-09-1-0389), the NSF CAREER program and gifts from Microsoft Research and Columbia University.
Authors’ address: J. Demme and S. Sethumadhavan, Columbia University, New York; email: {jdd,
simha}@cs.columbia.edu.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights for
components of this work owned by others than ACM must be honored. Abstracting with credit is permitted.
To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component of this
work in other works requires prior specific permission and/or a fee. Permissions may be requested from
Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212)
869-0481, or permissions@acm.org.
c© 2012 ACM 1544-3566/2012/01-ART21 $10.00

DOI 10.1145/2086696.2086700 http://doi.acm.org/10.1145/2086696.2086700

ACM Transactions on Architecture and Code Optimization, Vol. 8, No. 4, Article 21, Publication date: January 2012.

21:2 J. Demme and S. Sethumadhavan

0

20

40

60

80

100

1 6 11 16 21 26 31 36 41 46 51 56 61

Pe
rc

en
ta

ge
 o

f C
PU

 C
yc

le
s

Number of Func�ons

Average Cumula�ve Execu�on Time per Number of Func�ons

SPEC INT

Chrome V8

SPEC FP

Fig. 1. This chart plots cumulative program execution time (on the Y-axis) along with number of func-
tions contributing to the execution time (on the X-axis). Measurements on 11 SPEC INT benchmarks and
16 SPEC FP (both averaged in the figure) and the V8 Javascript engine distributions all demonstrate that
many functions contribute to total execution time significantly. This spread presents a significant challenge
for program characterization.

characterized is very large—nearly 30% of its functions must be examined to cover
90% of its execution. Given this immense scale, automated program characterization
could be much more comprehensive than manual characterization, potentially yielding
better results.

To ameliorate these challenges researchers have proposed a wide variety of technolo-
gies including sophisticated code profiling, fast simulation techniques, and machine
learning with performance counter data [Namolaru et al. 2010; Dubach et al. 2007;
Demme and Sethumadhavan 2011; Eeckhout 2010]. Some researchers have even pro-
posed crowdsourcing approaches [Fursin and Temam 2009; Fursin et al. 2008]. In this
paper we propose a new, complementary technique to study program behavior. Our
program characterization technique allows automatic identification of unique code be-
haviors across a code base by approximately clustering program graphs. By clustering
similar graphs, we expose similar control and dataflow patterns in software, allowing
one representative sample from each cluster to be studied rather than all graphs.

While we are not the first to observe the benefit of clustering [Joshi et al. 2006],
prior approaches have focused on clustering of non-graphical formats such instruction
frequency, or microarchitecture dependent features such as cache misses or IPC mea-
sured from performance counters. Our technique is the first to propose clustering on
program graphs and thus enables microarchitecture independent characterization of
programs. Futher, graphical intermediate representations are a semantic step closer
to algorithmic description and thus may offer more fundamental insights into program
traits and lead to more comprehensive program characterization.

In this paper we adapt a decade old advance in identifying similarity in graphs [Mel-
nik et al. 2002] to create approximate graph clustering for program characterization.
Traditional graph similarity methods such as isomorphism can determine if two graphs
match, but are not useful for clustering because even very similar programs can produce
slightly different graphs. Approximate graph clustering, on the other hand, instead of
providing discrete answers, produces a continuous measure for similarity based on the
number and content of nodes and edges and graph topologies. This continuous measure
lends itself to grouping graphs using known clustering techniques.

To evaluate the usefulness of graph clustering we compare it to other known non-
graphical, microarchitecture dependent and independent information. We measure the
effectiveness by applying and comparing the effect of existing optimizations to functions
in clusters. We hypothesize that if functions in these clusters react homogeneously

ACM Transactions on Architecture and Code Optimization, Vol. 8, No. 4, Article 21, Publication date: January 2012.

Approximate Graph Clustering for Program Characterization 21:3

Fig. 2. CENTRIFUGE involves three stages: data collection, analysis and evaluation. In data collection, in-
formation on function behavior is assembled. Analysis uses this information to compute distances between
each function, in turn using this distance data to cluster the functions. Finally, in the evaluation stage we
examine the clusters to determine their quality.

to optimization then they share common behaviors or characteristics. Homogeneous
reactions also suggest that exemplars from the clusters could be used to develop the
original optimizations.

The results of our evaluation on the SPEC benchmark suite show that clustering pro-
grams based on dynamic dataflow graphs produces much better clusters than clustering
with instruction mixes (non-graphical) or other static/dynamic run time characteristics
(non-graphical, microarchitecture dependent). We also qualitatively examined our best
clusters to investigate if new distinct behaviors could be identified in the clusters. We
were able to locate distinct behaviors in some clusters, but not all. This is likely because
the SPEC benchmark is intended to be diverse so little obvious redundancy exists. Our
results suggest that automated behavior identification may be possible with graphical
clustering.

Interesting characteristics found with our techniques could assist in the discovery
of a variety of optimizations in software, hardware or some hybrid of the two. These
optimizations could be purely serial in nature or take advantage of parallelism. For
instance, if one was to build clusters using data dependence information, resulting
clusters might highlight data parallelism patterns ripe for optimization. As another
example, we find an interesting pattern in our results (Table III). As we discuss later,
this very common pattern could be further optimized.

The rest of this paper is structured as follows: Section 2 defines our clustering frame-
work, called CENTRIFUGE, and details our implementation. We explain our experimental
setup for computing results in Section 3. These results are then presented and analyzed
Section 4. Section 5 discusses related work. We conclude with a discussion of results,
implications and future work in Section 6.

2. METHODOLOGY

Our clustering framework, CENTRIFUGE supports three primary steps: building program
representations, clustering and evaluation. The first stage involves collecting static and
dynamic characteristics of functions into approximate representations of the functions.
The second stage involves two processes: comparison and clustering. Comparison in-
volves examining the approximate representation of different functions to judge their
similarity. This similarity information is then used to cluster the functions into similar
groups. At the end of the second stage a user could study functions from each cluster.
In the evaluation stage—the third and final stage—the contents of each cluster can be
used to analyze the quality of the clusterings. This section provides details about each
of these stages and is intended to give an overview of the processes, desiderata and
tradeoffs relevant to each stage.

ACM Transactions on Architecture and Code Optimization, Vol. 8, No. 4, Article 21, Publication date: January 2012.

21:4 J. Demme and S. Sethumadhavan

2.1. Representations

The first task in identifying code behaviors is to find static and/or dynamic features that
capture function behavior. Good features will capture all characteristics that influence
performance significantly. In this paper, we include traditional static and dynamic char-
acteristics that are believed to influence performance such as static instruction mix,
static control/data flow graphs and dynamic data flow graphs. In addition we included
two new features: dynamic data flow graphs augmented with locality information and
a representation based on how well functions perform on existing hardware using
existing optimizations. Each of these representations is described below.

(1) Static Instruction Mix. Static instruction mix can be useful as an indicator of
how functions react to optimizations. For instance, clustering based on instruction mix
may group math heavy functions or data movement functions in different clusters, and
optimizations (such as vectorization or optimizations that use string movements) may
operate on functions in different clusters differently. We compute the static instruc-
tion mix by compiling a program without any optimization and then categorizing the
instructions into one of following categories: control transfer, arithmetic, logical, and
memory. The fraction of instructions in each category are represented in a vector for
each function in the code base.

(2) Static CDFG. Static control/data flow graphs are commonly used in compiler
analyses. These graphs can capture the parallelism that is available in a function
(or program) and thus may be good candidates to represent function behavior. As is
common in compiler analyses, we use basic blocks as vertices in the flow graphs. We
further annotate our graph vertices with basic block instruction mixes and edges with
the dependence type (control, must pointer, may pointer, register). These dependencies
were generated using the LLVM [Lattner 2002] compiler.

(3) Dynamic DFG. Static CDFGs include static memory dependence information. This
dependence information is computed using alias analysis algorithms, which have been
shown to be imprecise [Mock et al. 2001]. In the worst case, overly conservative analysis
yields completely connected dependence graphs. Since there is only one complete graph
given a number of vertices, this poor analysis effectively reduces the amount of infor-
mation about the function. Dynamic data flow graphs, on the other hand, can be more
detailed than Static CDFGs because they represent only observed dependence edges
instead of potential dependence edges. Further, we can annotate these graphs with
other dynamic information. In this paper, we use dependence observation frequencies
(the number of times a data dependence is observed between two basic blocks divided
by the number of times the consuming basic block is executed) to add dependence edge
weights to our Dynamic DFGs. To annotate these graphs’ vertices, we compute the
basic block’s dependence chain length (the length of the longest producer-consumer
chain of instructions within a basic block), number of integer instructions, number of
floating point instructions, and number of memory loads, all of which are expressed as
a fraction of total instructions. Dynamic features like execution count can also be used,
though we have found that this can increase sensitivity to input bias.

(4) Dynamic DFG with Load Distance. It has been known for long time that Data
locality is an important determinant of performance along with parallelism [Arvind and
Iannucci 1987]. While the CDFG and Dynamic DFG are likely to be good at capturing
parallelism constraints, they do not explicitly capture locality. To capture locality, we
measure the number of dynamic instructions since each load’s address was last accessed
in the program (measured with PIN on executables with no optimizations). This is
similar to reuse distance [Ding and Zhong 2003], except we count instructions instead of
memory accesses. For example, if a called function accesses an address X which was last
written by the calling function, a very low load distance will result. If, however, address
X was last written during program initialization and has not been read since, a very

ACM Transactions on Architecture and Code Optimization, Vol. 8, No. 4, Article 21, Publication date: January 2012.

Approximate Graph Clustering for Program Characterization 21:5

high load distance will result, reflecting the improbability of the location being in the
processor cache. We then compute the average and standard deviation of the logarithms
of all load distances in a function and use these two measures as indicators of reuse.

(5) Function Optimization Reactions. In addition to the above representations, we
can use existing optimizations to cluster similar functions. The intuition is that func-
tions that are similar will be affected to the same degree when a set of optimizations
are applied to them. Observing the optimization reactions, therefore, may give us an
indirect indication of function characteristics. We construct this model by applying
various combinations of known optimizations to a function, measuring the change in
execution time for that function, and computing the function’s optimization reaction,
as defined in Eq. (7). The optimization reactions are then used to cluster functions.

2.2. Comparison Methods

Now that we have the features to create the clusters, the next step is to determine how
these features should be compared. We formalize the comparison by defining distance
functions: for features that are represented in vector formats (e.g., static instruction
mix), we use the Euclidean distance between the two vectors to measure their similarity.
In our initial experiments Euclidean distance yielded better results than alternatives
(like Manhattan distance). For two vectors A and B both with length n, Euclidean
distance is defined as: √√√√ n∑

i=1

(Ai − Bi)2 (1)

Comparison of the graphical representations (e.g., static CDFG, dynamic DFG,
locality-annotated Dynamic DFGs) is more complex, deserving further explanation.

Traditional graph comparison algorithms such as isomorphism and subgraph isomor-
phism produce boolean “match” or “no match” results when two graphs are compared
and are not useful for computing the approximate similarity between two functions
represented as graphs. Instead, we use an approximate graph comparison technique
[Melnik et al. 2002] to compute the distance between two graphs. Determining the
distance between two graphs involves two steps: mapping and scoring. In the mapping
stage, we pair nodes from the two input graphs. That is, for each vertex in graph A,
we find the vertex in graph B which is most similar, both in terms of the local infor-
mation (basic block instruction mix) and neighborhood information (the similarity of
connected vertices). The scoring phase then uses this mapping to compute vertex and
graph structural similarity. With our graphical features, this process corresponds to
finding similar basic blocks and then using the edge information (presence or absence
of edge, and edge annotations) to judge the similarity of two functions.

Mapping. The mapping phase has been adapted from the approach described by
Melnik et al. as “Similarity Flooding” [Melnik et al. 2002]. Although we use a similar set
of steps, we have modified the ways in which values are normalized in various phases.
The basic idea is to construct a new graph which contains all possible pairs of vertices
and edges derived from edges in the two original graphs.1 We assign a similarity value
to each vertex (described shortly) in this graph and then iteratively propagate these
values along edges. Upon convergence, each value represents the similarity of a pair of
vertices which is sensitive to both the basic blocks’ functional similarity (as determined
by instruction mix distance) and the two graphs’ structural similarity. We can then use
these values to determine the optimal mapping. The precise details follow in addition
to an example in Figure 3.

1This is known as a product graph. Specifically, we use the Tensor product graph.

ACM Transactions on Architecture and Code Optimization, Vol. 8, No. 4, Article 21, Publication date: January 2012.

21:6 J. Demme and S. Sethumadhavan

Fig. 3. Simple example of the mapping stage, a variant of Similarity Flooding. In this example, we use unity
edge weights and scalar (instead of vector) values in each vertex.

Formally, we begin by forming a tensor graph product of two function graphs to be
matched. For weighted graphs (VA, EA) and (VB, EB), we form the tensor graph product
(VP, EP):

Vp ≡ {AxB; A ∈ VA, B ∈ VB}
Ep ≡ {((AxB)x(A′xB′), Wa · WB);

(AxA′, WA) ∈ EA, (BxB′, WB) ∈ EB}
(2)

This product graph contains all the possible mappings, so the final mapping is intu-
itively a restricted subset of this graph.

Next, we define a primitive product graph vertex similarity function, D(v). In our
case, each product graph vertex represents a pair of basic blocks—one from each input
graph—so we use the Manhattan distance between the basic blocks’ instruction mixes.
(In our initial experiments, Manhattan distance yielded better results than the more
popular Euclidean distance.) For two vectors A and B each of length n, Manhattan
distance is defined as:

n∑
i=1

|Ai − Bi| (3)

Step three involves propagating the similarity scores along the graph edges, in a
manner similar to that described by Melnik et al. [2002]. This is an iterative calculation
wherein at each step, i, we compute each vertex value Mi

j for each vertex j in V using
the set of adjacent vertices and edge weights, Ej and Wj :

M0
j = D(Vj)

Mi
j = D(Vj)

max(D(Vi−1)) ·∑ Wj

∑
a∈Ej

Wa
j · Mi−1

a
(4)

The intuition behind this step is that if a node represents a good match and its
neighbors are also good matches, then that node is probably a very good match and
hence its score improves.2

The output from this similarity propagation step is a matrix of vertex-vertex pair
scores which reflect both the primitive basic block and structural similarity. Determin-
ing the optimal mapping is thus a matter of selecting the set of pairs which are overall

2Detailed explanation of the Similarity Flooding algorithm is outside the scope of this paper. Please refer to
Melnik et al. [2002] for more information.

ACM Transactions on Architecture and Code Optimization, Vol. 8, No. 4, Article 21, Publication date: January 2012.

Approximate Graph Clustering for Program Characterization 21:7

most similar. This is an instance of the assignment problem and we use the well known
Hungarian Algorithm [Kuhn 1955] to solve it.

Scoring. Once the optimal mapping is established, we merge the two input graphs
and score the merged graph. There are a number of scoring methods one could use. One
might use the scores assigned by the previous mapping step. However, the scores from
the mapping stage have been heavily affected by scores from potential pairs which
turned out to be bad matches. (Recall that the product graph through which scores
are propagated contains all possible pairs from which we select a small subset.) As a
result, the scores from the mapping phase reflect the fitness of the selected vertex pairs
relative to all the possible vertex pairs. The score we want, however, is the similarity
of the two input graphs relative to other graphs.

We have designed an alternative scoring metric which essentially takes the basic
block Manhattan distance and combines it with the structural mismatch which we
define as the normalized quantity of unmatched edges. For each merged vertex, i in
V , we produce the basic block instruction mix Manhattan distance, Di, the number of
common shared edges, Si, and the number of non-shared edges, Ei. For vertices with
no counterpart, we use

∑
d∈Di

d for Di and set Si = Ei. We compute the score as:

1
|V |

∑
i∈V

(
Di + Ei

Si + Ei

)
(5)

2.3. Clustering Methods

Equipped with quantitative comparisons for each representation, CENTRIFUGE can use
well-known clustering methods such as agglomerative clustering, k-means, or SOM. In
general, a clustering algorithm will attempt to group most similar functions together
based on item distances or similarity of their features.

Some of these clustering techniques such as agglomerative clustering are hierarchical
and produce dendrograms as the output instead of discrete clusters. The dendrograms
can be converted to flat clusters by thresholding—cutting off growth of a cluster at a par-
ticular maximum diameter or a predetermined average internal distance. Thresholding
creates a tradeoff between cluster size and the similarity of the contained functions.
Higher thresholds typically create larger clusters with more dissimilarity than lower
thresholds.

The user can also use an alternative property called savings instead of thresholding.
Savings indicates the reduction in number of functions to be examined after clustering.
Formally, the savings yielded from clustering f functions into c clusters is (1− c

f) ·100.
For example, if 50 functions are clustered 20 groups, then only 20 representative
functions must be studied. This results in a 60% savings in the number of functions to be
understood. The savings and threshold metrics are related because a larger threshold
results in larger savings. Importantly, the savings metric can be compared across
different representations and distance functions whereas threshold cannot since it is
specific to the distance function. Additionally, parameterizing function organization via
savings allows the user to gain better insight into functions’ similarities by adjusting
the savings level. Different clusters are shown at each savings level, indicating the
distribution of similarity for various thresholds.

For this paper, we use average linkage agglomerative clustering with the following
four representations and distance functions.

(1) Instruction Mix. Euclidean distance
(2) Static CDFG. Similarity flooding-based graph distance defined in Section 2.2 using

unity edge weights.
(3) Dynamic DFG. Similarity flooding-based graph distance defined in Section 2.2.

ACM Transactions on Architecture and Code Optimization, Vol. 8, No. 4, Article 21, Publication date: January 2012.

21:8 J. Demme and S. Sethumadhavan

(4) Locality Annotated Dynamic DFG. We must combine the score from Similarity
Flooding-based graph distance (defined in Section 2.2) for the Dynamic DFG with
the load distance information detailed in Section 2.1. This data is represented by
five numbers: the graph distance, g, for each function, the logarithms of the mean
of the load distances, Ma and Mb along with logarithms of the standard deviations
of the load distances, Sa and Sb. We combine them as such:

g + |Ma − Mb| + |Sa − Sb| (6)

Our fifth representation, optimization reaction, also uses agglomerative clustering,
but instead uses Ward’s linkage [Ward 1963]. Ward’s linkage clustering attempts to
minimize the variance of vector data within clusters. In other words, each time a
cluster is selected for a particular data point, the cluster with the least increase in
internal average variance is selected. Since our evaluation will eventually compute
internal standard deviations, we can expect this clustering technique to create better
clusters.

Optimization Reaction Metric. Since profiling yields absolute times, we cannot di-
rectly compare optimization affects without some normalization of the times. Through-
out this paper, we use optimization reaction, defined below, to normalize all execution
times to the range [0, 1]. If T (f, o, i) is the runtime for function f when compiled with
optimization o, executed with input set i and O is set of all profiled optimizations, we
define the optimization reaction:

R(f, o, i) ≡ T (f, o, i) − minj∈OT (f, j, i)
maxj∈OT (f, j, i) − minj∈OT (f, j, i)

(7)

Normalizing the optimizations allows functions to be compared based on their rel-
ative effectiveness rather than raw speedup. The optimization reaction metric allows
us to judge a reaction to an optimization by rank, so functions which are both sped up
best by a particular optimization will have similar reactions for that optimization.

Parameter Tuning. In all of these comparison methods, some information may be
more important than others for similarity comparison i.e., the number of memory in-
structions may influence performance more than the number of math instruction. To
account for this, we can add additional parameters to each distance function allowing
them to weight information differently. For instance, when we compute vector dis-
tances, we can instead use a weighted vector distance, changing the importance of
each vector field. We add parameters for two representationss—Dynamic DFGs and
Dynamic DFGs with Load Distances—in the following places.

(1) Vector Distances. All vector distance calculations (in both similarity flooding and
scoring) get weights for each vector field.

(2) Similarity Flooding. In the mapping phase, similarity scores propagate through the
product graph (Eq. (2)). At each iteration, these propogated scores are combined
with local scores, creating a trade off between local and neighborhood similarity
(Eq. (4)). We add weights to each input before adding them.

(3) Graph Scoring. After mapping, a merged graph is created and scored. During this
scoring, several factors are combined to create a single similarity score. Here, we
add importance weights when combining local and neighborhood similarity (similar
to the last point), plus a weights to use for local and neighborhood similarity for
unmatched vertices.

(4) Load Distances. When combining data flow graphs with locality information
(Eq. (6)), we add three pieces of information: graph similarity, difference in log
load distance means and difference in standard deviations. When tuned, each term
is given a weight.

ACM Transactions on Architecture and Code Optimization, Vol. 8, No. 4, Article 21, Publication date: January 2012.

Approximate Graph Clustering for Program Characterization 21:9

In total, we have 12 parameters which must be tuned. Given the extreme non-
linearity of graph mapping, scoring and clustering, it is not possible to back-calculate
optimal parameter values. Instead, we must use black-box optimization. In particular,
we implemented simulated annealing, splitting our set of functions into 1/3 for training
and 2/3 for testing. As an objective function, we measure the variance of reaction to
optimization within the generated clusters. As such, simulated annealing with this
objective function will attempt to minimize the variance of reaction to optimization
within the generated clusters.

2.4. Evaluation Strategy for CENTRIFUGE

We have now defined various representations, distance functions and clustering algo-
rithms. Combined, these are used to create a clustering of functions. In this paper,
we compare functions across programs. This function granularity is neither the only
possible granularity nor the optimal granularity, and virtually any block of code could
be compared to any other. However, we chose function granularity for two reasons:
First, functions are the granularity at which programmers generally think. Since we
are attempting to find patterns in programmers’ code, functions are a reasonable code
unit. Second, identifying appropriate code sequences from an entire program is a diffi-
cult analysis problem. Other work [Pan and Eigenmann 2008; Triantafyllis et al. 2006]
explores this problem and should integrated into CENTRIFUGE in the future.

To determine the utility of each representation, we must examine the resulting
clustering and judge its quality. We can quantitatively measure quality by studying
optimizations that have already been discovered; in particular, we wish to determine
if our clustering could have been useful in discovering an optimization which already
exists. If the functions in each cluster tend to react similarly to an existing optimization,
then those clusters are significant with respect to that optimization. As a result, having
those clusters may have been useful in developing the optimization. This metric can
easily be quantified by measuring the functions’ reactions to various optimizations.
With this insight it is also fairly straightforward to come up with lower bound and
upper bounds for the quality of the clusters. We can then compare various quality
metrics about each representation’s clustering to these bounds.

Random Clustering. It is reasonable to expect a clustering to do no worse than ran-
domly grouping functions. To estimate this worst case, we randomly generate similarity
distances between all pairs of functions in the code base and use these distances along
with average linkage agglomerative clustering to generate clusters. We would expect
all properties of the functions in each of these clusters to be random selections of
properties from the global set of functions.

Ideal Clustering. Clusters built using the same information upon which they are
evaluated should represent an upper bound. We will evaluate clusters based on the
consistency with which their functions react to optimization, so we use the evalua-
tion data and Ward’s linkage agglomerative clustering to build this loose upper bound.
(Loose due to the heuristic nature of agglomerative clustering in this context.) It is
important to note that this is also an unfair upper bound because it assumes complete
knowledge whereas other representations, by definition, are incomplete approxima-
tions of function behavior. With complete knowledge, this ideal clustering can account
for random variations in runtime as well as measurement error.

3. EXPERIMENTAL METHODOLOGY

3.1. Data Collection

We collected static and dynamic execution characteristics data from functions in
SPEC CPU 2006 suite. The static information (viz., instruction mix and CDFG

ACM Transactions on Architecture and Code Optimization, Vol. 8, No. 4, Article 21, Publication date: January 2012.

21:10 J. Demme and S. Sethumadhavan

representations) were collected using a custom LLVM pass operating on code com-
piled to bitcode with “-O0 -g” options. Optimization is mostly turned off as we want to
analyze code which is closely related to the original source code; optimizations distort
this relationhip. We used the “mem2reg”3 and “basicaa”4 optimization and analysis
passes before invoking our own. Dynamic data flow graphs and load distances were
collected using custom PIN [Luk et al. 2005] tools.

Function Profiling Framework. To measure the reactions of functions to optimiza-
tion, we used performance counters via LiMiT [Demme and Sethumadhavan 2011] to
measure the execution times of functions precisely. To account for random variation,
we execute programs three times and use the average.

Function Pruning. Data is collected about SPEC functions from four different tools
(viz., LLVM, GCC, PIN and profiling tools), each of which have some limitations and
caveats e.g., measurement errors of very short functions e.g., less than 10k cycles.
To fairly evaluate our representations, we need to execute CENTRIFUGE with a set of
functions for which all of this data is available and accurate. As a result of pruning we
are left with 628 functions, 1/3 of which are selected for training and the remaining
2/3 are used for evaluation in the following section.

3.2. Evaluation

To evaluate the merit of the CENTRIFUGE methodology and the success of each represen-
tation we have proposed, we must judge the utility of its results. To do so, we take a
retrospective approach: if the clusters which CENTRIFUGE produces react homogeneously
to existing optimizations, then there exists some relationship between the clusters and
these existing optimizations. As a result, we speculate that these clusters may have
been useful in discovering these optimizations.

Existing Optimizations. We select four of GCC’s optimizations (unswitch-loops,
predictive-commoning, gcse-after-reload and tree-vectorize) which can be applied be-
yond the -O2 level. These are all of the optimizations which are turned on by ’-O3’
with the exception of inlining-based optimization, which we cannot use since we are
measuring each function. We then create 15 different combinations of these four5 and
use them with -O2. We measured the effect of these fifteen different combinations of
optimization flags on SPEC.

By evaluating CENTRIFUGE against advanced optimizations (which often have min-
imal or negative effect on functions) and simultaneously combining them with basic
optimizations we make our task both more difficult and more realistic. Newer opti-
mizations are likely to be relatively complex and/or less-than-universally applicable as
much of the “low-hanging fruit” has been realized in the simpler optimizations. (Indeed
this is the case, as evidenced by the data in Table I, which shows that our selected opti-
mizations have significant effect on a small percentage of our experimental functions.)
Should our representations work well only with simpler optimizations, they are less
likely to be useful in the future. However, if our clustering is effective with advanced
optimizations which are often not effective themselves, this implies that our method
has very good resolution.

Additional Clusterings. To provide context for the results, we artificially generate
two additional clusterings—random and ideal—which represent loose lower and upper

3The mem2reg optimization is necessary to create sane LLVM bitcode from LLVM-GCC’s output, which
converts all stack variables to pointers instead of using LLVM’s SSA form.
4Although LLVM has other alias analysis passes, we observed no difference in behavior.
5GCC does not allow optimization re-ordering; each optimization can simply be on or off, so 24 −1 = 15 since
we don’t use only ’-O2’.

ACM Transactions on Architecture and Code Optimization, Vol. 8, No. 4, Article 21, Publication date: January 2012.

Approximate Graph Clustering for Program Characterization 21:11

Table I.

(Percent of Functions)
Speedup Slowdown

Optimizations ≥ 15% ≥ 15%
-O2 -fpredictive-commoning -fgcse-after-reload 3.1% 6.9%
-O2 -fpredictive-commoning -ftree-vectorize 3.9% 9.1%
-O2 -fpredictive-commoning 2.7% 6.8%
-O2 -fgcse-after-reload 1.9% 9.6%
-O2 -funswitch-loops -fpredictive-commoning -fgcse-after-reload -ftree-vectorize 25.5% 4.4%
-O2 -ftree-vectorize 3.0% 7.5%
-O2 -fpredictive-commoning -fgcse-after-reload -ftree-vectorize 4.1% 9.0%
-O2 -fgcse-after-reload -ftree-vectorize 3.3% 10.2%
-O2 -funswitch-loops -fgcse-after-reload -ftree-vectorize 7.4% 7.5%
-O2 -funswitch-loops 5.0% 7.7%
-O2 -funswitch-loops -ftree-vectorize 33.2% 5.3%
-O2 -funswitch-loops -fpredictive-commoning -fgcse-after-reload 2.5% 8.0%
-O2 -funswitch-loops -fgcse-after-reload 2.5% 7.9%
-O2 -funswitch-loops -fpredictive-commoning 24.4% 3.3%
-O2 -funswitch-loops -fpredictive-commoning -ftree-vectorize 16.2% 9.1%

Of our 628 selected functions, this table shows the percentage of programs that were sped up or slowed
down a significant percent (15%) over optimization with just ’-O2’.

bounds. Random clusters are produced using a Gaussian random distance function to
judge the distance between functions. The ideal clusters were built using the profil-
ing data collected for evaluation. Since they are built and evaluated on the same data,
they are close to optimal. This optimality is not guaranteed, however, due to the heuris-
tic nature of agglomerative clustering. Additionally, we construct other clusters using
randomly selected subsets of the evaluation data. These “Existing (1/2)” and “Existing
(1/3)” clusterings use one-half and one-third of the optimizations, respectively, for con-
struction but are evaluated on all of the optimizations. They are intended to judge how
well optimization reaction data generalizes to other optimizations.

Savings. In our cluster analyses, we parameterize groups of clusters by savings.
Recall that “savings” indicates the reduction in number of functions to be examined
after clustering and is defined as (1 − c/ f) · 100 for f functions grouped into c clusters.
The savings level also represents a trade off: the higher the savings level, there are
fewer clusters, but the functions in each cluster are less likely to be similar. At the
extreme high end, all functions are in a single cluster, and thus there is no interesting
information. At the extreme low end, each cluster contains one function, so there is
also no interesting information. The CENTRIFUGE user must determine an appropriate
point.

4. RESULTS

We design statistical tests to answer the following two questions and qualitatively
evaluate two more.

(1) Are similarity distances (as determined by each representation) within random and
ideal clusters different from global similarity distances? If a representation cap-
tures characteristics pertinent to the optimizations, we expect that representation
to produce small distances between functions in ideal clusters. As a sanity check,
we expect distances within random clusters to be little different from the global set
of distances. (Section 4.1)

(2) How consistently does optimization affect functions in each cluster? We would ex-
pect functions in clusters which are relevant with respect to existing optimizations
to react similarly to optimization. (Section 4.2)

ACM Transactions on Architecture and Code Optimization, Vol. 8, No. 4, Article 21, Publication date: January 2012.

21:12 J. Demme and S. Sethumadhavan

25%

20%

15%

10%

5%

0%

-5%
DDFG
Tuned

DDFG w/
Load

Distances
Tuned

DDFG DDFG w/
Load

Distances

Instruc�on
Mix

Sta�c
CDFG

D
iff

er
en

ce
 In

 D
is

ta
nc

e
fr

om
 G

lo
ba

l M
ea

n

Distances Computed by Models Within Ideal and
Random Clusters for 0% to 50% Savings

Ideal Random

(0
.4

0)
(0

.5
4)

(0
.3

9)
(0

.5
1)

(0
.3

9)
(0

.5
7)

(0
.3

8)
(0

.5
7)

(0
.3

7)
(0

.5
6)

(0
.3

7)
(0

.5
6)

Fig. 4. To measure the acuity of our representations we compare the average distance between clustered
functions (in the 0% to 50% range) to the global average distance. We expect the random clusters’ averages
to be approximately zero and the ideal clusters’ averages to be greater than that. Measurements show that
random clusters tend to be zero or negative whereas ideal clusters have high differences (T-Test significance
values are in parenthesis). Results indicate that our representations’ distances are not correlated with
random clusters, but are correlated with ideal clusters.

(3) After tuning, what features are most effective? (Section 4.3)
(4) Qualitatively, what type of clusters are produced? (Section 4.4)

4.1. Evaluating Distances in Ideal and Random Clusters

We first wish to determine if our representations’ judgment of similarity is interesting
with respect to existing optimizations. This test uses each representation’s distance
function but not the clusters produced using these distances, only the random and
ideal clusters. As such, it allows us to test for significance using a minimal amount of
clustering and thus eliminate a potential source of error.

For each representation, we compute the average distance between all function pairs.
This average global distance indicates how far apart—on average—functions usually
are for each representation. We then examine the ideal and random clusterings at
each savings level (0%–50%). For each cluster, we look at the distances between each
pair of functions, as determined by each representation. We compute an average of
these internal distances and subtract that number from the representation’s global
average. If the cluster is significant with respect to the representation, the cluster’s
internal distance average will be small and thus this difference will be high. We also
run Student’s T-Test [Student 1908] to determine the significance of this difference.
We further calculate weighted (by cluster size) averages of the mean differences and
average T-Test probabilities for each savings range.

The summary results of this analysis are shown in Figure 4. As expected, differ-
ences in the random clusters tend to be closer to zero than in the ideal clusters.6 This
result indicates that there is no correlation between random clusters and our repre-
sentation distances. The fact that differences in ideal clusters are higher indicates
that representation distances tend to be smaller in these clusters than the average

6In some cases, the bars for random clusters are visibly above or below zero. This is because the distributions
are skewed, so random selection is more likely be closer to the global median rather than the global average.
The more important comparison is the difference between the two bars.

ACM Transactions on Architecture and Code Optimization, Vol. 8, No. 4, Article 21, Publication date: January 2012.

Approximate Graph Clustering for Program Characterization 21:13

global distance. Further, the T-Test probability values are smaller for the ideal clus-
ters, showing a greater chance that these differences are significant. On the whole,
this test shows that all of the proposed representations have a closer relationship to
ideal clusters than random clusters. Although tempting, we cannot determine from
this difference data which of the representations is superior. Although normalized us-
ing distance averages, these distances are not guaranteed to have similar distributions,
so we cannot determine the significance of these values relative to each other.

4.2. Clustering Quality and Implications

Next, we evaluate the consistency of optimization reactions within each cluster. In con-
trast to the previous test of distances in random and ideal clusters, this test evaluates
the clusters generated by each of our representations in addition to the two artificial
ones—random and ideal—allowing us to directly compare all of them. To test this con-
sistency, we compute the standard deviation of reaction to optimization (as defined in
Eq. (7)) for all functions within each cluster. The intuition behind this metric is simple:
good clusters should contain functions which react similarly to optimization. To present
these data, we compute the reaction standard deviation for each cluster and average
across all the clusters at each savings level.

Figure 5 shows the consistency of optimization reaction for each representation
described in this paper, plus the ideal and random clusters. As expected, the consistency
of the clusters tends to decrease with savings because the clusters must grow in size,
forcing functions with decreasing similarity into the same clusters. This is a direct
result of the tradeoff discussed in the above “savings” paragraph.

There are several other interesting things to note in these results.

(1) These results clearly demonstrate that instruction mixes and “Existing (1/3)” are
largely worthless for clustering because they are barely better than random.

(2) As expected, using a substantial amount of the evaluation data (Existing 1/2) pro-
duces good results. When this quantity is decreased to one-third, however, the
results are little better than random. This result implies that optimization reac-
tions themselves are poor predictors of similarity because they do not generalize to
other optimizations.

(3) Few of the representations perform well in the very low savings range (0% to
25%) compared to ideal. Although subtle, this affirms a widely-held belief that
performance is extremely difficult to predict accurately. Although several of the
representations are able to predict large performance changes, none can do so at
the accuracy required to perform well in this regime.

(4) Static CDFG fairs very poorly overall but perform well in the small savings range
(0% to 25%). This result implies that Static CDFGs are very useful for identifying
identical functions, but poor for gauging approximate function similarity. We spec-
ulate that this is due to weaknesses in alias analysis and as a result, Static CDFGs
contain too many edges to be useful.

Overall, our proposed representations are a mixed bag: some perform well and some
do not. In general, representations utilizing dynamic data flow graphs perform well; the
area under the tuned dynamic data flow graph representation curve is 80% closer to the
area under the ideal curve than that of the random curve! This result is encouraging
and confirms the utility of CENTRIFUGE: clusters of functions which react similarly to
optimization can be built using generic representations.

Discussion of Optimizations. We can also examine our results’ relationship to
the optimizations we are using for evaluation—predictive-commoning, tree-vectorize,
unswitch-loops, and gcse-after-reload. Predictive commoning examines loops and

ACM Transactions on Architecture and Code Optimization, Vol. 8, No. 4, Article 21, Publication date: January 2012.

21:14 J. Demme and S. Sethumadhavan

Fig. 5. Consistency of optimization reactions for clusters from various representations. Consistency is cal-
culated as standard deviation, so lower numbers are better. Each clustering is shown relative to loose upper
and lower bounds, “ideal” and “random”. Although none of the representations perform perfectly, we see that
“Tuned Dynamic Data Flow Graph” performs very well.

ACM Transactions on Architecture and Code Optimization, Vol. 8, No. 4, Article 21, Publication date: January 2012.

Approximate Graph Clustering for Program Characterization 21:15

Table II.

Parameter DDFG DDFG w/ LD
Basic Block Annotations

Dependence Chain Length 1.0 0
Number of Int Instructions 1.0 0.68
Number of FP Instructions 0.64 0.95
Number of Memory Loads 0 0.26

Graph Mapping
Neighborhood Score (vs. local similarity score) 0.46 1.0

Graph Scoring
Difference in Local Similarity 0.05 0

Difference in Edges 1.0 0.54
Unmatched Annotation Penalty 0 0.18

Unmatched Edge Penalty 0.64 0.33
Load Distances

Graph Similarity Score — 0.45
Difference in LD Means — 0.84

Difference in LD Std. Dev. — 0

Parameter values for dynamic data flow graphs and dynamic data flow graphs with load distances after
tuning them via simulated annealing. Area under the curves of Figure 5 was used as the objective function
to minimize.

attempts to pull out redundant computations. Tree vectorization is GCC’s auto vec-
torizer, intended to create parallel SSE code from normal loops. Unswitch loops pulls
conditional statements out of loops allowing the loop to be optimized with less hin-
drance. Finally, GCSE after reload invokes another subexpression elimination with
the goal of eliminating redundant loads. In each case, there are characteristics in the
code which determine whether or not the optimization can be applied and how perfor-
mance will be affected. The results of some of our representations imply that they are
capturing some of these characteristics whereas others are not.

With regard to our DDFG (dynamic data flow graph) representation, what features
relevant to these optimizations could it be capturing? All of these optimizations deal
with movement (or elimination) of operations and thus the optimizations sensitive to
both control and data dependences—if certain dependencies exist, the optimization
cannot be applied. Alternatively, if certain dependence patterns do exist, the first three
optimizations may be applied and strongly affect performance.

We also add load distances to indicate data locality for one representation. Although
it does not seem to have a strong effect on our results, it is possible that it could
related strongly to unswitch loops and GCSE optimizations. Both eliminate redundant
operations (which are likely to have memory operations); since these operations are
likely to occur often and are guaranteed to access the same memory, they will likely
have very good locality. As such, low load distances may weakly indicate that these
optimizations would apply.

Lastly, it is not surprising that instruction mix does poorly; merely knowing that a
function has memory loads or integer calculations tells us nothing about whether or
not the operations can be moved.

Although our results are specific to these four optimizations, we suspect that de-
pendencies are key to most complex optimization, thus our DDFG representations are
likely to scale well.

4.3. Evaluation of Parameter Tuning

As discussed in Section 2.3, “Parameter Tuning”, we use simulated annealing to op-
timize parameters used for our graph comparisons—dynamic data flow graphs and
dynamic data flow graphs with load distances (locality information). The resulting
weights are shown in Table II. Though potentially interesting, these results have no

ACM Transactions on Architecture and Code Optimization, Vol. 8, No. 4, Article 21, Publication date: January 2012.

21:16 J. Demme and S. Sethumadhavan

Table III.

Cluster #1

int CCTK_NumTimeLevelsFromVarI (int var) {
return ((0 <= var && var < total_variables) ?
groups[group_of_variable[var]].n_timelevels:

-1);
}
int CCTK_GroupTypeFromVarI (int var) {
return ((0 <= var && var < total_variables) ?
groups[group_of_variable[var]].gtype :

-1)
}

int ETree_frontSize (ETree *etree, int J) {
if (etree == NULL || J < 0 ||

J >= etree->nfront) {
fprintf(stderr, "\n fatal error in"

"ETree_frontSize(%p,%d)\n"
" bad input\n", etree, J);

exit(-1);
}
return(etree->nodwghtsIV->vec[J]);
}

An example cluster in which all functions are guarded accessors. The first two are from 436.cactusADM and
the last is from 454.calculix. In these clusters, conditions are checked before returning data from a structure.
The error case, however, is different—two return error codes, one aborts. Error cases are uncommon, so they
have little effect on performance, and may provide an (de)optimization opportunity.

guarantee of optimality as they are found in continuous in 12-dimensional space. Al-
though not optimal these weights were used to generate the clusters evaluated and
presented here and evaluate better than untuned representations. There are several
interesting observations to make about the weights.

(1) The dependence chain length within a basic block is hugely important to gaug-
ing similarity unless load distances are being considered. Further, the number of
memory loads in each basic block are not a good indicator of similarity unless load
distances are also considered.

(2) Although the similarity between basic blocks is used in the graph mapping stage,
they are not used in scoring. Instead, the graphical edge similarity (number of
matched/unmatched edges) is used. As a result, graphs of different sizes are penal-
ized far less with out tuned models than untuned.

(3) When integrating load distances, the difference in standard deviations is not used,
however the difference in log load distance averages is given nearly twice the weight
as the graph similarity. This indicates that data locality is important in judging
similarity.

4.4. Qualitative Evaluation of Cluster Results

The results presented in Figure 5 show that tuned dynamic data flow graphs tend to
do a reasonable job clustering functions which will react similarly to optimization. So,
what sort of functions get grouped together? To answer this question, we examine clus-
ters produced around the 15% to 20% savings level. In some clusters, we see functions
which are nearly duplicates. Others have obvious patterns—these may indicate poten-
tial widely-applicable opportunities for optimization. Other clusters contain functions
which do not appear similar, yet react similarly to optimization and have similar data
flow graphs. Here are some examples.

Near-Duplicates. Programs like GCC tend to have many functions which are auto-
generated and thus nearly identical. Many of these near-duplicates are very small
functions (often constructors) with a single basic block. These clusters are largely
uninteresting as they are best optimized via inlining and in-context optimization.

Guarded Accessors. By far, the most common pattern we see clustered is a pattern
we call “guarded accessors”. Although class field accessors are thought to be a pattern
used primarily in object-oriented languages, we also see in C that many functions are
created to conditionally get or mutate a data structure. For an example, see Table III.

ACM Transactions on Architecture and Code Optimization, Vol. 8, No. 4, Article 21, Publication date: January 2012.

Approximate Graph Clustering for Program Characterization 21:17

Table IV.

Cluster #2

tree nreverse (tree t) {
tree prev = 0, decl, next;
for (decl = t; decl; decl = next) {

next = TREE_CHAIN (decl);
TREE_CHAIN (decl) = prev;
prev = decl;

}
return prev;

}

void type_hash_add (unsigned int hashcode,
tree type) {

struct type_hash *h; void **loc;

h = (struct type_hash *)
ggc_alloc (sizeof (struct type_hash));

h->hash = hashcode;
h->type = type;
loc = htab_find_slot_with_hash(type_hash_table,

h, hashcode, INSERT);
*(struct type_hash **) loc = h;

}

An example cluster in which functions react similarly to optimization, but do not appear similar. Despite
the dissimilarity, these two functions have identical dynamic data flow graphs and react similarly to opti-
mization.

These clusters represent a common behavior that one might be able to optimize. First,
all of them have a very uncommon branch case—the error conditions—where perfor-
mance does not matter. Second, the conditions being checked have few side effects
(with the exception of NULL checks), so they can be evaluated in any order. These
uncommon cases may be detected via profiling. Alternatively, it may be reasonable to
assume simple return values like −1 or not returning (like the exit call) are uncom-
mon cases. Further, the functions shown here are not directly affected much by the four
optimizations we are applying, and thus may represent a new optimization opportunity.

Non-Intuitive Clusters. There is another set of clusters which contain functions which
react similarly to optimization, but it is not intuitively (or obviously) clear why. Table IV
shows an example—one function which reverses a list and another that inserts a record
into a hash table. While one has a loop (which is likely not unrolled as it is pointer
chasing) the other has no loop in either its body nor function calls. One allocates
memory and makes a function call, the other is a terminal in the call chain. What do
these functions have in common? First, their dynamic data flow graphs are identical,
have very similar edge weights and their basic block annotations are similar—they
have very few integer and floating point calculations but have memory loads in some
basic blocks. The similar memory patterns mean that similar data placements, layouts
or prefetching strategies may work similarly on both functions. This class of clusters
is probably the most interesting; it shows similarity that likely would not have been
recognized during manual inspection of the code, yet our generic representation and
profiling of optimized code shows similar behavior and reactions to optimization.

5. RELATED WORK

Related research topics include performance prediction mechanisms, machine learning
applications in optimization, program behavior analysis and code mining for topic
analysis and microarchitectural enhancement, and computational kernel classification.

Several works [Dubach et al. 2007; Cavazos et al. 2006; Hoste et al. 2006] attempt
to predict the reaction of code to various program transformations using code features,
profiling information from subsets of possible program transformations and dynamic
program characteristics (like instruction mix and strides), respectively. These works,
however, are based entirely on overall program speedup and whole program analysis.
While there are some similarities to our work (in spirit) none of these works discuss
clustering based on the program features. These works are largely motivated by the

ACM Transactions on Architecture and Code Optimization, Vol. 8, No. 4, Article 21, Publication date: January 2012.

21:18 J. Demme and S. Sethumadhavan

problem of determining if/when an optimization should be applied during compilation
and not for characterizing program behavior.

A large body of work [Leather et al. 2009; Cavazos 2008; Alvincz and Glesner 2009;
Stephenson and Amarasinghe 2005; Stephenson et al. 2003; Agakov et al. 2006; Fursin
and Temam 2009] attempts to apply machine learning techniques to compiler opti-
mizations. The bulk of this work attempts to improve existing optimizations and their
associated heuristics via machine learning or find better combinations of program opti-
mizations (phase ordering.) While some of them implicitly use clustering, none of these
cluster on graphical formats which this work shows to be advantageous.

The software engineering community has several works [Kuhn et al. 2007; Ugurel
et al. 2002; Tangsripairoj and Samadzadeh 2005] in which functions are clustered
to identify functions which have similar keywords or are semantically similar. These
efforts use textual analysis, so there is little reason to believe these analysis techniques
could be relevant to program characterization as minor changes in source code (e.g.,
changing variable names) do not typically affect optimization or performance behavior.

The software engineering community has also long worked to identify “copy and
paste” code. Many approaches [Li et al. 2006; Kamiya et al. 2002; Baxter et al. 1998;
Gabel et al. 2008; Krinke 2001; Pham et al. 2009; Kontogiannis 1993; Basit and
Jarzabek 2009; Smith and Horwitz 2009] have been developed, nearly all of which
rely solely on static code analysis. Typically, these tools are not designed to calculate
similarity—they only detect when code has been copied, thus any graph matching algo-
rithms they use do not require the same level of approximation our approch provides.

In the architecture community there is also some relevent work in both benchmark
selection and program graph mining. Several papers [Joshi et al. 2006; Phansalkar
et al. 2007; Eeckhout et al. 2003] use analysis to find redundancy in sets of benchmark
programs. These techniques can be used for benchmark selection however they operate
at the granularity of an entire program. As a result, this work is largely complimentary
and in fact was indirectly used to select benchmarks for this paper as [Phansalkar
et al. 2007] was used to create SPEC06. Another set of papers [Hormati et al. 2007;
Clark et al. 2003; Clark et al. 2006] use program mining to assist in instruction set
customization. In this work, Clark et al. examine and find common patterns in graphs,
however their techniques work to find very small patterns—several instructions—only
rather than function-granularity patterns and idioms.

Another effort to recognize patterns in code is XARK [Arenaz et al. 2008]. XARK’s is
able to classify loop structures into several categories of computational kernels types
such as inductions, maps and scalar assignments. CENTRIFUGE is distinctly different as
it computes approximate similarity and hierarchically clusters functions. Other work
[Gupta et al. 2010] on design pattern mining uses inexact graph matching, an approach
similar to ours. It uses a different approximate graph matching algorithm, however,
and operates on UML graphs rather than automatically collected data.

6. CONCLUSION

In this paper, we proposed clustering on graphical intermediate program representa-
tions for program characterization. We used approximate graph similarity to drive our
graph clustering. To evaluate the effectiveness of such clustering we designed a frame-
work called CENTRIFUGE that groups functions based on common static and dynamic
characteristics. We have shown that functions grouped by graphical properties tend to
react similarly to several existing optimizations. These results indicate that (1) it is
possible to classify code snippets into behavioral groups which react similarly to opti-
mization and (2) that clustering on graphical representations produces better results
compared to static non-graphical formats. Further, based on manual analysis of some
of clustered functions we determine that there is potential for discovering interesting

ACM Transactions on Architecture and Code Optimization, Vol. 8, No. 4, Article 21, Publication date: January 2012.

Approximate Graph Clustering for Program Characterization 21:19

patterns and thus our techniques may actually be useful for program characteriza-
tion. This process of automatic behavior discovery could be an important step towards
automatic optimization discovery.

ACKNOWLEDGMENTS

We thank Prof. Alfred Aho, Melanie Kambadur, anonymous reviewers, and members of the Computer Archi-
tecture and Security Technologies Lab (CASTL) at Columbia University for their feedback on this work.

REFERENCES

AGAKOV, F., BONILLA, E., CAVAZOS, J., FRANKE, B., FURSIN, G., O’BOYLE, M. F. P., THOMSON, J., TOUSSAINT, M., AND

WILLIAMS, C. K. I. 2006. Using machine learning to focus iterative optimization. In CGO’06: Proceedings
of the International Symposium on Code Generation and Optimization. IEEE Computer Society, Los
Alamitos, CA, 295–305.

ALVINCZ, L. AND GLESNER, S. 2009. Breaking the curse of static analyses: Making compilers intelligent via
machine learning. In Proceedings of the SMART’09 Workshop.

ARENAZ, M., TOURIÑO, J., AND DOALLO, R. 2008. Xark: An extensible framework for automatic recognition of
computational kernels. ACM Trans. Program. Lang. Syst. 30, 6, Article 32.

ARVIND AND IANNUCCI, R. A. 1987. Two fundamental issues in multiprocessing. In Parallel Computing in
Science and Engineering, 61–88.

BASIT, H. A. AND JARZABEK, S. 2009. A data mining approach for detecting higher-level clones in software.
IEEE Trans. Softw. Eng. 35, 4, 497–514.

BAXTER, I. D., YAHIN, A., MOURA, L., SANT’ANNA, M., AND BIER, L. 1998. Clone detection using abstract syn-
tax trees. In ICSM’98: Proceedings of the International Conference on Software Maintenance. IEEE
Computer Society, Los Alamitos, CA, 368.

CAVAZOS, J. 2008. Intelligent compilers. In Proceedings of the IEEE International Conference on Cluster
Computing. 360–368.

CAVAZOS, J., DUBACH, C., AGAKOV, F., BONILLA, E., O’BOYLE, M. F. P., FURSIN, G., AND TEMAM, O. 2006. Automatic
performance model construction for the fast software exploration of new hardware designs. In CASES’06:
Proceedings of the International Conference on Compilers, Architecture and Synthesis for Embedded
Systems. ACM, New York, 24–34.

CLARK, N., HORMATI, A., MAHLKE, S., AND YEHIA, S. 2006. Scalable subgraph mapping for acyclic computation
accelerators. In CASES’06: Proceedings of the International Conference on Compilers, Architecture and
Synthesis for Embedded Systems. ACM, New York, 147–157.

CLARK, N., ZHONG, H., AND MAHLKE, S. 2003. Processor acceleration through automated instruction set cus-
tomization. In MICRO 36: Proceedings of the 36th annual IEEE/ACM International Symposium on
Microarchitecture. IEEE Computer Society, Los Alamitos, CA, 129.

DEMME, J. AND SETHUMADHAVAN, S. 2011. Rapid identification of architectural bottlenecks via precise event
counting. In Proceeding of the 38th Annual International Symposium on Computer Architecture
(ISCA’11). ACM, New York, 353–364.

DING, C. AND ZHONG, Y. 2003. Predicting whole-program locality through reuse distance analysis. In Pro-
ceedings of the ACM SIGPLAN Conference on Programming Language Design and Implementation
(PLDI’03). ACM, New York, 245–257.

DUBACH, C., CAVAZOS, J., FRANKE, B., FURSIN, G., O’BOYLE, M. F., AND TEMAM, O. 2007. Fast compiler optimi-
sation evaluation using code-feature based performance prediction. In CF’07: Proceedings of the 4th
International Conference on Computing Frontiers. ACM, New York, 131–142.

EECKHOUT, L. 2010. Computer architecture performance evaluation methods. In Synthesis Lectures on Com-
puter Architecture, Morgan Claypool.

EECKHOUT, L., VANDIERENDONCK, H., AND BOSSCHERE, K. D. 2003. Quantifying the impact of input data sets on
program behavior and its applications. J. Instruction-Level Parall. 5, 1–33.

FURSIN, G., MIRANDA, C., TEMAM, O., NAMOLARU, M., YOM-TOV, E., ZAKS, A., MENDELSON, B., BARNARD, P., ASHTON,
E., COURTOIS, E., BODIN, F., BONILLA, E., THOMSON, J., LEATHER, H., WILLIAMS, C., AND O’BOYLE, M. 2008.
Milepost gcc: Machine learning based research compiler. In Proceedings of the GCC Developers’ Summit.

FURSIN, G. AND TEMAM, O. 2009. Collective optimization. In HiPEAC’09: Proceedings of the 4th International
Conference on High Performance Embedded Architectures and Compilers. Springer-Verlag, Berlin, 34–
49.

GABEL, M., JIANG, L., AND SU, Z. 2008. Scalable detection of semantic clones. In ICSE’08: Proceedings of the
30th International Conference on Software Engineering. ACM, New York, 321–330.

ACM Transactions on Architecture and Code Optimization, Vol. 8, No. 4, Article 21, Publication date: January 2012.

21:20 J. Demme and S. Sethumadhavan

GUPTA, M., SINGH RAO, R., AND TRIPATHI, A. 2010. Design pattern detection using inexact graph match-
ing. In Proceedings of the International Conference on Communication and Computational Intelligence
(INCOCCI). 211–217.

HORMATI, A., CLARK, N., AND MAHLKE, S. 2007. Exploiting narrow accelerators with data-centric subgraph
mapping. In Proceedings of the International Symposium on Code Generation and Optimization. CGO’07.
341–353.

HOSTE, K., PHANSALKAR, A., EECKHOUT, L., GEORGES, A., JOHN, L. K., AND DE BOSSCHERE, K. 2006. Performance
prediction based on inherent program similarity. In PACT’06: Proceedings of the 15th International
Conference on Parallel Architectures and Compilation Techniques. ACM, New York, 114–122.

JOSHI, A., PHANSALKAR, A., EECKHOUT, L., AND JOHN, L. 2006. Measuring benchmark similarity using inherent
program characteristics. Comput. IEEE Trans. 55, 6, 769–782.

KAMIYA, T., KUSUMOTO, S., AND INOUE, K. 2002. Ccfinder: a multilinguistic token-based code clone detection
system for large scale source code. IEEE Trans. Softw. Eng. 28, 7, 654–670.

KONTOGIANNIS, K. 1993. Program representation and behavioural matching for localizing similar code frag-
ments. In CASCON’93: Proceedings of the Conference of the Centre for Advanced Studies on Collaborative
Research. IBM Press, 194–205.

KRINKE, J. 2001. Identifying similar code with program dependence graphs. In Proceedings of the 8th Working
Conference on Reverse Engineering. 301–309.

KUHN, A., DUCASSE, S., AND GÍRBA, T. 2007. Semantic clustering: Identifying topics in source code. Inf. Softw.
Technol. 49, 3, 230–243.

KUHN, H. W. 1955. The hungarian method for the assignment problem. Naval Resear. Logistics Quart. 83–97.
LATTNER, C. 2002. LLVM: An Infrastructure for multi-stage optimization. M.S. thesis, Computer Science

Department University of Illinois at Urbana-Champaign. http://www.llvm.org.
LEATHER, H., BONILLA, E., AND O’BOYLE, M. 2009. Automatic feature generation for machine learning based

optimizing compilation. In CGO’09: Proceedings of the 7th Annual IEEE/ACM International Symposium
on Code Generation and Optimization. IEEE Computer Society, Los Alamitos, CA, 81–91.

LI, Z., LU, S., MYAGMAR, S., AND ZHOU, Y. 2006. CP-miner: finding copy-paste and related bugs in large-scale
software code. IEEE Trans. Softw. Eng. 32, 3, 176–192.

LUK, C.-K., COHN, R., MUTH, R., PATIL, H., KLAUSER, A., LOWNEY, G., WALLACE, S., REDDI, V. J., AND HAZELWOOD,
K. 2005. PIN: Building customized program analysis tools with dynamic instrumentation. In PLDI’05:
Proceedings of the ACM SIGPLAN Conference on Programming Language Design and Implementation.
ACM, New York, 190–200.

MELNIK, S., GARCIA-MOLINA, H., AND RAHM, E. 2002. Similarity flooding: A versatile graph matching algorithm
and its application to schema matching. In Proceedings of the 18th International Conference on Data
Engineering. 117–128.

MOCK, M., DAS, M., CHAMBERS, C., AND EGGERS, S. J. 2001. Dynamic points-to sets: a comparison with static anal-
yses and potential applications in program understanding and optimization. In PASTE’01: Proceedings
of the ACM SIGPLAN-SIGSOFT Workshop on Program Analysis for Software Tools and Engineering.
ACM, New York, 66–72.

NAMOLARU, M., COHEN, A., FURSIN, G., ZAKS, A., AND FREUND, A. 2010. Practical aggregation of semantical pro-
gram properties for machine learning based optimization. In Proceedings of the International Conference
on Compilers, Architecture, and Synthesis for Embedded Systems (CASES’10).

PAN, Z. AND EIGENMANN, R. 2008. PEAK—A fast and effective performance tuning system via compiler opti-
mization orchestration. ACM Trans. Program. Lang. Syst. 30, 3, Article 17.

PHAM, N. H., NGUYEN, H. A., NGUYEN, T. T., AL-KOFAHI, J. M., AND NGUYEN, T. N. 2009. Complete and accurate
clone detection in graph-based models. In ICSE’09: Proceedings of the IEEE 31st International Conference
on Software Engineering. IEEE Computer Society, Los Alamitos, CA, 276–286.

PHANSALKAR, A., JOSHI, A., AND JOHN, L. K. 2007. Analysis of redundancy and application balance in the spec
cpu2006 benchmark suite. In Proceedings of the 34th Annual International Symposium on Computer
Architecture (ISCA’07). ACM, New York, 412–423.

SMITH, R. AND HORWITZ, S. 2009. Detecting and measuring similarity in code clones. In Proceedings of the
International Workshop on Software Clones (IWSC).

STEPHENSON, M. AND AMARASINGHE, S. 2005. Predicting unroll factors using supervised classification. In
CGO’05: Proceedings of the International Symposium on Code Generation and Optimization. IEEE
Computer Society, Los Alamitos, CA, 123–134.

STEPHENSON, M., AMARASINGHE, S., MARTIN, M., AND O’REILLY, U.-M. 2003. Meta optimization: Improving com-
piler heuristics with machine learning. SIGPLAN Not. 38, 5, 77–90.

STUDENT. 1908. The probable error of a mean. Biometrika, 1–25.

ACM Transactions on Architecture and Code Optimization, Vol. 8, No. 4, Article 21, Publication date: January 2012.

Approximate Graph Clustering for Program Characterization 21:21

TANGSRIPAIROJ, S. AND SAMADZADEH, M. H. 2005. Organizing and visualizing software repositories using the
growing hierarchical self-organizing map. In SAC’05: Proceedings of the ACM Symposium on Applied
Computing. ACM, New York, 1539–1545.

TRIANTAFYLLIS, S., BRIDGES, M. J., RAMAN, E., OTTONI, G., AND AUGUST, D. I. 2006. A framework for unrestricted
whole-program optimization. In PLDI’06: Proceedings of the ACM SIGPLAN Conference on Programming
Language Design and Implementation. ACM, New York, 61–71.

UGUREL, S., KROVETZ, R., AND GILES, C. L. 2002. What’s the code? automatic classification of source code
archives. In KDD’02: Proceedings of the 8th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining. ACM, New York, 632–638.

WARD, J. H. J. 1963. Hierarchical grouping to optimize an objective function. J. Amer. Statis. Assn. 236–244.

Received July 2011; revised October 2011 and December 2011; accepted December 2011

ACM Transactions on Architecture and Code Optimization, Vol. 8, No. 4, Article 21, Publication date: January 2012.

