
Use of Deep Linguistic Features for the Recognition and Labeling of
Semantic Arguments

John Chen
Department of Computer Science

Columbia University
New York, NY 10027

jchen@cs.columbia.edu

Owen Rambow
Department of Computer Science

Columbia University
New York, NY 10027

rambow@cs.columbia.edu

Abstract

We use deep linguistic features to predict
semantic roles on syntactic arguments,
and show that these perform considerably
better than surface-oriented features. We
also show that predicting labels from a
“lightweight” parser that generates deep
syntactic features performs comparably to
using a full parser that generates only sur-
face syntactic features.

1 Introduction

Syntax mediates between surface word order and
meaning. The goal of parsing (syntactic analysis)
is ultimately to provide the first step towards giv-
ing a semantic interpretation of a string of words.
So far, attention has focused on parsing, because the
semantically annotated corpora required for learn-
ing semantic interpretation have not been available.
The completion of the first phase of the PropBank
(Kingsbury et al., 2002) represents an important
step. The PropBank superimposes an annotation of
semantic predicate-argument structures on top of the
Penn Treebank (PTB) (Marcus et al., 1993; Marcus
et al., 1994). The arc labels chosen for the arguments
are specific to the predicate, not universal.

In this paper, we find that the use of deep lin-
guistic representations to predict these semantic la-
bels are more effective than the generally more
surface-syntax representations previously employed
(Gildea and Palmer (2002)). Specifically, we show
that the syntactic dependency structure that results

load

arg0

John

arg2

hay

arg1

truck

Figure 1: PropBank-style semantic representation
for both John loaded the truck with hay and John
loaded hay into the truck

from the extraction of a Tree Adjoining Grammar
(TAG) from the PTB, and the features that accom-
pany this structure, form a better basis for determin-
ing semantic role labels. Crucially, the same struc-
ture is also produced when parsing with TAG. We
suggest that the syntactic representation chosen in
the PTB is less well suited for semantic process-
ing than the other, deeper syntactic representations.
In fact, this deeper representation expresses syntac-
tic notions that have achieved a wide acceptance
across linguistic frameworks, unlike the very partic-
ular surface-syntactic choices made by the linguists
who created the PTB syntactic annotation rules.

The outline of this paper is as follows. In Sec-
tion 2 we introduce the PropBank and describe the
problem of predicting semantic tags. Section 3
presents an overview of our work and distinguishes
it from previous work. Section 4 describes the
method used to produce the TAGs that are the basis
of our experiments. Section 5 specifies how train-
ing and test data that are used in our experiments
are derived from the PropBank. Next, we give re-
sults on two sets of experiments. Those that predict



semantic tags given gold-standard linguistic infor-
mation are described in Section 6. Those that do
prediction from raw text are described in Section 7.
Finally, in Section 8 we present concluding remarks.

2 The PropBank and the Labeling of
Semantic Roles

The PropBank (Kingsbury et al., 2002) annotates
the PTB with dependency structures (or ‘predicate-
argument’ structures), using sense tags for each
word and local semantic labels for each argument
and adjunct. Argument labels are numbered and
used consistently across syntactic alternations for
the same verb meaning, as shown in Figure 1. Ad-
juncts are given special tags such as TMP (for tem-
poral), or LOC (for locatives) derived from the orig-
inal annotation of the Penn Treebank. In addition
to the annotated corpus, PropBank provides a lexi-
con which lists, for each meaning of each annotated
verb, its roleset, i.e., the possible arguments in the
predicate and their labels. As an example, the entry
for the verb kick, is given in Figure 2. The notion
of “meaning” used is fairly coarse-grained, typically
motivated from differing syntactic behavior. Since
each verb meaning corresponds to exactly one role-
set, these terms are often used interchangeably. The
roleset also includes a “descriptor” field which is in-
tended for use during annotation and as documenta-
tion, but which does not have any theoretical stand-
ing. Each entry also includes examples. Currently
there are frames for about 1600 verbs in the corpus,
with a total of 2402 rolesets.

Since we did not yet have access to a corpus an-
notated with rolesets, we concentrate in this paper
on predicting the role labels for the arguments. It
is only once we have both that we can interpret the
relation between predicate and argument at a very
fine level (for example, truck in he kicked the truck
withhay as the destination of the loading action). We
will turn to the problem of assigning rolesets to pred-
icates once the data is available. We note though that
preliminary investigations have shown that for about
65% of predicates (tokens) in the WSJ, there is only
one roleset. In a further 7% of predicates (tokens),
the set of semantic labels on the arguments of that
predicate completely disambiguates the roleset.

ID kick.01
Name drive or impel with the foot
VN/Levin 11.4-2, 17.1, 18.1, 23.2

classes 40.3.2, 49

Roles

Number Description
0 Kicker
1 Thing kicked
2 Instrument

(defaults to foot)
Example [John]i tried [*trace*i]ARG0 to kick [the

football]ARG1

Figure 2: The unique roleset for kick

3 Overview

Gildea and Palmer (2002) show that semantic role
labels can be predicted given syntactic features de-
rived from the PTB with fairly high accuracy. Fur-
thermore, they show that this method can be used
in conjunction with a parser to produce parses anno-
tated with semantic labels, and that the parser out-
performs a chunker. The features they use in their
experiments can be listed as follows.

Head Word (HW.) The predicate’s head word as
well as the argument’s head word is used.

Phrase Type. This feature represents the type
of phrase expressing the semantic role. In Figure 3
phrase type for the argument prices is NP.

Path. This feature captures the surface syntactic
relation between the argument’s constituent and the
predicate. See Figure 3 for an example.

Position. This binary feature represents whether
the argument occurs before or after the predicate in
the sentence.

Voice. This binary feature represents whether the
predicate is syntactically realized in either passive or
active voice.

Notice that for the exception of voice, the fea-
tures solely represent surface syntax aspects of
the input parse tree. This should not be taken
to mean that deep syntax features are not impor-
tant. For example, in their inclusion of voice,
Gildea and Palmer (2002) note that this deep syntax
feature plays an important role in connecting seman-
tic role with surface grammatical function.

Aside from voice, we posit that other deep lin-
guistic features may be useful to predict semantic
role. In this work, we explore the use of more gen-
eral, deeper syntax features. We also experiment
with semantic features derived from the PropBank.



fallingarePrices

NNS

S

NP VP

VBP VP

VBG

Figure 3: In the predicate argument relationship be-
tween the predicate falling and the argument prices,
the path feature is VBG↑VP↑VP↑S↓NP.

Our methodology is as follows. The first stage en-
tails generating features representing different lev-
els of linguistic analysis. This is done by first auto-
matically extracting several kinds of TAG from the
PropBank. This may in itself generate useful fea-
tures because TAG structures typically relate closely
syntactic arguments with their corresponding pred-
icate. Beyond this, our TAG extraction procedure
produces a set of features that relate TAG structures
on both the surface-syntax as well as the deep-syntax
level. Finally, because a TAG is extracted from the
PropBank, we have a set of semantic features de-
rived indirectly from the PropBank through TAG.
The second stage of our methodology entails using
these features to predict semantic roles. We first
experiment with prediction of semantic roles given
gold-standard parses from the test corpus. We sub-
sequently experiment with their prediction given raw
text fed through a deterministic dependency parser.

4 Extraction of TAGs from the PropBank

Our experiments depend upon automatically extract-
ing TAGs from the PropBank. In doing so, we fol-
low the work of others in extracting grammars of
various kinds from the PTB, whether it be TAG
(Xia, 1999; Chen and Vijay-Shanker, 2000; Chi-
ang, 2000), combinatory categorial grammar (Hock-
enmaier and Steedman, 2002), or constraint depen-
dency grammar (Wang and Harper, 2002). We will
discuss TAGs and an important principle guiding
their formation, the extraction procedure from the
PTB that is described in (Chen, 2001) including ex-
tensions to extract a TAG from the PropBank, and
finally the extraction of deeper linguistic features

VP

VP

are

VBP

S

VPNP

falling

VBG

NP

NNS

Prices

Figure 4: Parse tree associated with the sentence
Prices are falling has been fragmented into three
tree frames.

from the resulting TAG.
A TAG is defined to be a set of lexicalized el-

ementary trees (Joshi and Schabes, 1991). They
may be composed by several well-defined opera-
tions to form parse trees. A lexicalized elementary
tree where the lexical item is removed is called a
tree frame or a supertag. The lexical item in the
tree is called an anchor. Although the TAG for-
malism allows wide latitude in how elementary trees
may be defined, various linguistic principles gener-
ally guide their formation. An important principle
is that dependencies, including long-distance depen-
dencies, are typically localized the same elementary
tree by appropriate grouping of syntactically or se-
mantically related elements.

The extraction procedure fragments a parse tree
from the PTB that is provided as input into elemen-
tary trees. See Figure 4. These elementary trees can
be composed by TAG operations to form the origi-
nal parse tree. The extraction procedure determines
the structure of each elementary tree by localizing
dependencies through the use of heuristics. Salient
heuristics include the use of a head percolation ta-
ble (Magerman, 1995), and another table that distin-
guishes between complements and adjunct nodes in
the tree. For our current work, we use the head per-
colation table to determine heads of phrases. Also,
we treat a PropBank argument (ARG0 . . . ARG9) as
a complement and a PropBank adjunct (ARGM’s) as
an adjunct when such annotation is available.1 Oth-
erwise, we basically follow the approach of (Chen,
2001).2

Besides introducing one kind of TAG extraction

1The version of the PropBank we are using is not fully an-
notated with semantic role information, although the most com-
mon predicates are.

2Specifically, CA1.



procedure, (Chen, 2001) introduces the notion of
grouping linguistically-related extracted tree frames
together. In one approach, each tree frame is decom-
posed into a feature vector. Each element of this vec-
tor describes a single linguistically-motivated char-
acteristic of the tree.

The elements comprising a feature vector are
listed in Table 1. Each elementary tree is decom-
posed into a feature vector in a relatively straightfor-
ward manner. For example, the POS feature is ob-
tained from the preterminal node of the elementary
tree. There are also features that specify the syntac-
tic transformations that an elementary tree exhibits.
Each such transformation is recognized by struc-
tural pattern matching the elementary tree against a
pattern that identifies the transformation’s existence.
For more details, see (Chen, 2001).

Given a set of elementary trees which compose a
TAG, and also the feature vector corresponding to
each tree, it is possible to annotate each node rep-
resenting an argument in the tree with role informa-
tion. These are syntactic roles including for example
subject and direct object. Each argument node is la-
beled with two kinds of roles: a surface syntactic
role and a deep syntactic role. The former is ob-
tained through determining the position of the node
with respect to the anchor of the tree using the usu-
ally positional rules for determining argument status
in English. The latter is obtained from the former
and also from knowledge of the syntactic transfor-
mations that have been applied to the tree. For ex-
ample, we determine the deep syntactic role of a wh-
moved element by “undoing” the wh-movement by
using the trace information in the PTB.

The PropBank contains all of the notation of the
Penn Treebank as well as semantic notation. For our
current work, we extract two kinds of TAG from the
PropBank. One grammar, SEM-TAG, has elemen-
tary trees annotated with the aforementioned syntac-
tic information as well as semantic information. Se-
mantic information includes semantic role as well as
semantic subcategorization information. The other
grammar, SYNT-TAG, differs from SEM-TAG only
by the absence of any semantic role information.

Table 1: List of each feature in a feature vector and
some possible values.

Feature Values
Part of speech DT, NN, VB, RB, . . .
Subcategorization NP , NP S , ∅, . . .
MaxProj S, NP, VP, . . .
Modifyee NP, VP, S, . . .
Direction LEFT, RIGHT
Co-anchors { of }, { by }, ∅, . . .
Declarative TRUE, FALSE
Empty Subject TRUE, FALSE
Complementizer TRUE, FALSE
Passive TRUE, FALSE
By-Passive TRUE, FALSE
Topicalized-X TRUE, FALSE
Wh-movement-X-Y TRUE, FALSE
Subject-Aux Inversion TRUE, FALSE
Relative Clause TRUE, FALSE

5 Corpora

For our experiments, we use a version of the Prop-
Bank where the most commonly appearing predi-
cates have been annotated, not all. Our extracted
TAGs are derived from Sections 02-21 of the PTB.
Furthermore, training data for our experiments are
always derived from these sections. Section 23 is
used for test data.

The entire set of semantic roles that are found
in the PropBank are not used in our experiments.
In particular, we only include as semantic roles
those instances in the propbank such that in the ex-
tracted TAG they are localized in the same elemen-
tary tree. As a consequence, adjunct semantic roles
(ARGM’s) are basically absent from our test cor-
pus. Furthermore, not all of the complement seman-
tic roles are found in our test corpus. For example,
cases of subject-control PRO are ignored because
the surface subject is found in a different tree frame
than the predicate. Still, a large majority of com-
plement semantic roles are found in our test corpus
(more than 87%).



6 Semantic Roles from Gold-Standard
Linguistic Information

This section is devoted towards evaluating different
features obtained from a gold-standard corpus in the
task of determining semantic role. We use the fea-
ture set mentioned in Section 3 as well as features
derived from TAGs mentioned in Section 4. In this
section, we detail the latter set of features. We then
describe the results of using different feature sets.
These experiments are performed using the C4.5 de-
cision tree machine learning algorithm. The stan-
dard settings are used. Furthermore, results are al-
ways given using unpruned decision trees because
we find that these are the ones that performed the
best on a development set.

These features are determined during the extrac-
tion of a TAG:

Supertag Path. This is a path in a tree frame from
its preterminal to a particular argument node in a tree
frame. The supertag path of the subject of the right-
most tree frame in Figure 4 is VBG↑VP↑S↓NP.

Supertag. This can be the tree frame correspond-
ing to either the predicate or the argument.

Srole. This is the surface-syntactic role of an ar-
gument. Example of values include 0 (subject) and
1 (direct object).

Ssubcat. This is the surface-syntactic subcate-
gorization frame. For example, the ssubcat cor-
responding to a transitive tree frame would be
NP0 NP1. PPs as arguments are always annotated
with the preposition. For example, the ssubcat for
the passive version of hit would be NP1 NP2(by).

Drole. This is the deep-syntactic role of an argu-
ment. Example of values include 0 (subject) and 1
(direct object).

Dsubcat. This is the deep-syntactic subcate-
gorization frame. For example, the dsubcat cor-
responding to a transitive tree frame would be
NP0 NP1. Generally, PPs as arguments are anno-
tated with the preposition. For example, the dsub-
cat for load is NP0 NP1 NP2(into). The exception
is when the argument is not realized as a PP when
the predicate is realized in a non-syntactically trans-
formed way. For example, the dsubcat for the pas-
sive version of hit would be NP0 NP1.

Semsubcat. This is the semantic subcategoriza-
tion frame.

We first experiment with the set of features de-
scribed in Gildea and Palmer (2002): Pred HW,
Arg HW, Phrase Type, Position, Path, Voice. Call
this feature set GP0. The error rate, 10.0%, is lower
than that reported by Gildea and Palmer (2002),
17.2%. This is presumably because our training and
test data has been assembled in a different manner
as mentioned in Section 5.

Our next experiment is on the same set of fea-
tures, with the exception that Path has been replaced
with Supertag Path. (Feature set GP1). The er-
ror rate is reduced from 10.0% to 9.7%, albeit a
small improvement. One explanation for the im-
provement is that Path does not generalize as well
as Supertag path does. For example, the path fea-
ture value VBG↑VP↑VP↑S↓NP reflects surface sub-
ject position in the sentence Prices are falling but so
does VBG↑VP↑S↓NP in the sentence Sellers regret
prices falling. Because TAG localizes dependencies,
the corresponding values for Supertag path in these
sentences would be identical.

We now experiment with our surface syntax fea-
tures: Pred HW, Arg HW, Ssubcat, and Srole.
(Feature set SURFACE.) Its performance on SEM-
TAG is 8.2% whereas its performance on SYNT-
TAG is 7.6%, a tangible improvement over previ-
ous models. One reason for the improvement could
be that this model is assigning semantic labels with
knowledge of the other roles the predicate assigns,
unlike previous models.

Our next experiment involves using deep syntax
features: Pred HW, Arg HW, Dsubcat, and Drole.
(Feature set DEEP.) Its performance on both SEM-
TAG and SYNT-TAG is 6.5%, better than previous
models. Its performance is better than SURFACE
presumably because syntactic transformations are
taken to account by deep syntax features. Note also
that the transformations which are taken into ac-
count are a superset of the transformations taken into
account by Gildea and Palmer (2002).

This experiment considers use of semantic fea-
tures: Pred HW, Arg HW, Semsubcat, and Drole.
(Feature set SEMANTIC.) Of course, there are only
results for SEM-TAG, which turns out to be 1.9%.
This is the best performance yet.

In our final experiment, we use supertag features:
Pred HW, Arg HW, Pred Supertag, Arg Su-
pertag, Drole. (Feature set SUPERTAG.) The error



Table 2: Error rates of models which label semantic
roles on gold-standard parses. Each model is based
on its own feature sets, with features coming from a
particular kind of extracted grammar.

Feature Set SEM-TAG SYNT-TAG
GP0 10.0 10.0
GP1 9.7 9.7
SURFACE 8.2 7.6
DEEP 6.5 6.5
SEMANTIC 1.9
SUPERTAG 2.8 7.4

rates are 2.8% for SEM-TAG and 7.4% for SYNT-
TAG. Considering SEM-TAG only, this model per-
forms better than its corresponding DEEP model,
probably because supertag for SEM-TAG include
crucial semantic information. Considering SYNT-
TAG only, this model performs worse than its cor-
responding DEEP model, presumably because of
sparse data problems when modeling supertags.
This sparse data problem is also apparent by com-
paring the model based on SEM-TAG with the cor-
responding SEM-TAG SEMANTICmodel.

7 Semantic Roles from Raw Text

In this section, we are concerned with the problem of
finding semantic arguments and labeling them with
their correct semantic role given raw text as input. In
order to perform this task, we parse this raw text us-
ing a combination of supertagging and LDA, which
is a method that yields partial dependency parses an-
notated with TAG structures. We perform this task
using both SEM-TAG and SYNT-TAG. For the for-
mer, after supertagging and LDA, the task is accom-
plished because the TAG structures are already an-
notated with semantic role information. For the lat-
ter, we use the best performing model from Section 6
in order to find semantic roles given syntactic fea-
tures from the parse.

7.1 Supertagging

Supertagging (Bangalore and Joshi (1999)) is the
task of assigning a single supertag to each word
given raw text as input. For example, given the sen-
tence Prices are falling, a supertagger might return
the supertagged sentence in Figure 4. Supertagging

returns an almost-parse in the sense that it is per-
forming much parsing disambiguation. The typi-
cal technique to perform supertagging is the trigram
model, akin to models of the same name for part-
of-speech tagging. This is the technique that we use
here.

Data sparseness is a significant issue
when supertagging with extracted grammar
(Chen and Vijay-Shanker (2000)). For this reason,
we smooth the emit probabilities P (w|t) in the
trigram model using distributional similarity fol-
lowing Chen (2001). In particular, we use Jaccard’s
coefficient as the similarity metric with a similarity
threshold of 0.04 and a radius of 25 because these
were found to attain optimal results in Chen (2001).

Training data for supertagging is Sections 02-21
of the PropBank. A supertagging model based on
SEM-TAG performs with 76.32% accuracy on Sec-
tion 23. The corresponding model for SYNT-TAG
performs with 80.34% accuracy. Accuracy is mea-
sured for all words in the sentence including punc-
tuation. The SYNT-TAG model performs better
than the SEM-TAG model, understandably, because
SYNT-TAG is the simpler grammar.

7.2 LDA

LDA is an acronym for Lightweight Dependency
Analyzer (Srinivas (1997)). Given as input a su-
pertagged sequence of words, it outputs a partial de-
pendency parse. It takes advantage of the fact that
supertagging provides an almost-parse in order to
dependency parse the sentence in a simple, deter-
ministic fashion. Basic LDA is a two step procedure.
The first step involves linking each word serving as
a modifier with the word that it modifies. The sec-
ond step involves linking each word serving as an ar-
gument with its predicate. Linking always only oc-
curs so that grammatical requirements as stipulated
by the supertags are satisfied. The version of LDA
that is used in this work differs from Srinivas (1997)
in that there are other constraints on the linking pro-
cess.3 In particular, a link is not established if its
existence would create crossing brackets or cycles
in the dependency tree for the sentence.

We perform LDA on two versions of Section 23,
one supertagged with SEM-TAG and the other with

3We thank Srinivas for the use of his LDA software.



Table 3: Accuracy of dependency parsing using
LDA on supertagged input for different kinds of ex-
tracted grammar.

Grammar Recall Precision F
SEM-TAG 66.16 74.95 70.28
SYNT-TAG 74.79 80.35 77.47

SYNT-TAG. The results are shown in Table 3. Eval-
uation is performed on dependencies excluding leaf-
node punctuation. Each dependency is evaluated ac-
cording to both whether the correct head and depen-
dent is related as well as whether they both receive
the correct part of speech tag. The F-measure scores,
in the 70% range, are relatively low compared to
Collins (1999) which has a corresponding score of
around 90%. This is perhaps to be expected because
Collins (1999) is based on a full parser. Note also
that the accuracy of LDA is highly dependent on the
accuracy of the supertagged input. This explains, for
example, the fact that the accuracy on SEM-TAG
supertagged input is lower than the accuracy with
SYNT-TAG supertagged input.

7.3 Semantic Roles from LDA Output

The output of LDA is a partial dependency parse an-
notated with TAG structures. We can use this output
to predict semantic roles of arguments. The manner
in which this is done depends on the kind of gram-
mar that is used. The LDA output using SEM-TAG
is already annotated with semantic role information
because it is encoded in the grammar itself. On the
other hand, the LDA output using SYNT-TAG con-
tains strictly syntactic information. In this case, we
use the highest performing model from Section 6 in
order to label arguments with semantic roles.

Evaluation of prediction of semantic roles takes
the following form. Each argument labeled by a se-
mantic role in the test corpus is treated as one trial.
Certain aspects of this trial are always checked for
correctness. These include checking that the seman-
tic role and the dependency-link are correct. There
are other aspects which may or may not be checked,
depending on the type of evaluation. One aspect,
“bnd,” is whether or not the argument’s bracketing
as specified in the dependency tree is correct. An-
other aspect, “arg,” is whether or not the headword

Table 4: Evaluation of semantic argument recogni-
tion on SEM-TAG corpus via supertag and LDA.

Task: determine Recall Precision F
base + arg 43.13 84.71 57.16
base + bnd 30.74 60.39 40.74
base + bnd + arg 30.74 60.39 40.74

of the argument is chosen to be correct.
Table 4 show the results when we use SEM-TAG

in order to supertag the input and perform LDA.
When the boundaries are found, finding the head
word additionally does not result in a decrease of
performance. However, correctly identifying the
head word instead of the boundaries leads to an im-
portant increase in performance. Furthermore, note
the low recall and high precision of the “base +
arg” evaluation. In part this is due to the nature
of the PropBank corpus that we are using. In par-
ticular, because not all predicates in our version of
the PropBank are annotated with semantic roles, the
supertagger for SEM-TAG will sometimes annotate
text without semantic roles when in fact it should
contain them.

Table 5 shows the results of first supertagging
the input with SYNT-TAG and then using a model
trained on the DEEP feature set to annotate the re-
sulting syntactic structure with semantic roles. This
two-step approach greatly increases performance
over the corresponding SEM-TAG based approach.
These results are comparable to the results from
Gildea and Palmer (2002), but only roughly because
of differences in corpora. Gildea and Palmer (2002)
achieve a recall of 50.00, a precision of 58.00, and
an F-measure of 54.00 when using the full parser of
Collins (1999). They also experiment with using a
chunker which yields a recall of 35.00, a precision
of 50.00, and an F-measure of 41.00.

8 Conclusions

We have presented various alternative approaches to
predicting PropBank role labels using forms of lin-
guistic information that are deeper than the PTB’s
surface-syntax labels. These features may either
be directly derived from a TAG, such as Supertag
path, or indirectly via aspects of supertags, such



Table 5: Evaluation of semantic argument recogni-
tion on SYNT-TAG corpus via supertag and LDA.

Task: determine Recall Precision F
base + arg 71.41 82.57 76.59
base + bnd 52.13 60.28 55.91
base + bnd + arg 52.13 60.28 55.91

as deep syntactic features like Drole. These are
found to produce substantial improvements in ac-
curacy. We believe that such improvement is due
to these features better capturing the syntactic infor-
mation that is relevant for the task of semantic la-
beling. Also, these features represent syntactic cate-
gories about which there is a broad consensus in the
literature. Therefore, we believe that our results are
portable to other frameworks and differently anno-
tated corpora such as dependency corpora.

We also show that predicting labels from a
“lightweight” parser that generates deep syntactic
features performs comparably to using a full parser
that generates only surface syntactic features. Im-
provements along this line may be attained by use of
a full TAG parser, such as Chiang (2000) for exam-
ple.

Acknowledgments

This paper is based upon work supported by the Na-
tional Science Foundation under the KDD program
through a supplement to Grant No. IIS-98-17434.
Any opinions, findings, and conclusions or recom-
mendations expressed in this paper are those of the
authors and do not necessarily reflect the views of
the National Science Foundation.

References
Srinivas Bangalore and Aravind Joshi. 1999. Supertag-

ging: An approach to almost parsing. Computational
Linguistics, 25(2):237–266.

John Chen and K. Vijay-Shanker. 2000. Automated ex-
traction of tags from the penn treebank. In Proceed-
ings of the Sixth International Workshop on Parsing
Technologies, pages 65–76.

John Chen. 2001. Towards Efficient Statistical Parsing
Using Lexicalized Grammatical Information. Ph.D.
thesis, University of Delaware.

David Chiang. 2000. Statistical parsing with an
automatically-extracted tree adjoining grammar. In
Proceedings of the the 38th Annual Meeting of the As-
sociation for Computational Linguistics, pages 456–
463, Hong Kong.

Michael Collins. 1999. Head-Driven Statistical Models
for Natural Language Parsing. Ph.D. thesis, Univer-
sity of Pennsylvania.

Daniel Gildea and Martha Palmer. 2002. The neces-
sity of parsing for predicate argument recognition. In
acl02, pages 239–246, Philadelphia, PA.

Julia Hockenmaier and Mark Steedman. 2002. Acquir-
ing compact lexicalized grammars from a cleaner tree-
bank. In Proceedings of the Third International Con-
ference on Language Resources and Evaluation, Las
Palmas.

Aravind K. Joshi and Yves Schabes. 1991. Tree-
adjoining grammars and lexicalized grammars. In
Maurice Nivat and Andreas Podelski, editors, Defin-
ability and Recognizability of Sets of Trees. Elsevier.

Paul Kingsbury, Martha Palmer, and Mitch Marcus.
2002. Adding semantic annotation to the Penn Tree-
Bank. In Proceedings of the Human Language Tech-
nology Conference, San Diego, CA.

David Magerman. 1995. Statistical decision-tree models
for parsing. In 33rd Meeting of the Association for
Computational Linguistics (ACL’95).

Mitchell M. Marcus, Beatrice Santorini, and Mary Ann
Marcinkiewicz. 1993. Building a Large Annotated
Corpus of English: The Penn Treebank. Computa-
tional Linguistics, 19.2:313–330, June.

M. Marcus, G. Kim, M. Marcinkiewicz, R. MacIntyre,
A. Bies, M. Ferguson, K. Katz, and B. Schasberger.
1994. The Penn Treebank: Annotating predicate ar-
gument structure. In Proceedings of the ARPA Human
Language Technology Workshop.

B. Srinivas. 1997. Performance evaluation of supertag-
ging for partial parsing. In Proceedings of the Fifth In-
ternational Workshop on Parsing Technologies, pages
187–198, Cambridge, MA.

Wen Wang and Mary P. Harper. 2002. The superarv lan-
guage model: Investigating the effectiveness of tightly
integrating multiple knowledge sources. In Proceed-
ings of the Conference on Empirical Methods in Nat-
ural Language Processing (EMNLP), pages 238–247,
Philadelphia, PA.

Fei Xia. 1999. Extracting tree adjoining grammars from
bracketed corpora. In Fifth Natural Language Pro-
cessing Pacific Rim Symposium (NLPRS-99), Beijing,
China.


