Automation of Summary Evaluation
by the Pyramid Method
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A.l.Approaches

Extrinsic Intrinsic
evaluate the utility of a judge quality of summary
summary in the performance| | directly, based on analysis by
of a task some set of norms
gold standard promises generality
requires human subjects can offer automation
difficult might not apply well

) o 7
expensive which measure!



A.2: Intrinsic Evaluation — intuitions

® VWhat characteristics do we seek in a summary!?

faithfulness

compactness = low fidelity:

{I 2}-grams paraphrase & synonymy i

'._. _"rr- i, '-..
F .,..!-. "" -.-_ "l_ A __"“ _- .._



A.2: Intrinsic Evaluation — intuitions

® Approaches to measuring content coverage:
® manual v. automatic

® sentence co-selection

® recall, kappa, sentence-rank, relative utility
® pros: easy to include an “importance” measure
® cons: extractive only; variation in focus

® content-based similarity
® n-gram overlap, LCS, cosine
® pros: finer-grained; easy to automate
® COoNns: synonymy, variation in focus

® human-judged similarity
® pros: overcomes challenges of synonymy
® cons: reliability



A.3: Challenges

® No single perfect summary
® reasonable summaries can differ in focus

® strategies:
® build a single template from multiple reference summaries

® somehow account for “equally-good” content!?




A.4: DUC Procedure

|. Human creates a model summary

2. Model summary is split into units (roughly
clauses or EDUs)

3. Target summary is split into sentences

4. For each model unit:
a. find all target units expressing at least
some facts from this model unit
b. assess: these target units, as a group,
express X% of the meaning expressed by

the model unit
5. Final score = average score across all model

content units



A.4: DUC Procedure — Limitations

® Subjective assessment of “meaning coverage”
® Lin and Hovy 2002: Judges given the same model unit and
same target unit assigned identical score only 82% of time
® > 4% had three different scores

® Single model
® single reference summary means target summaries will
be punished or rewarded by chance correspondence
with model
® experimental choice of different model causes average of
{43%, 69%} change in absolute score; but over 20+
docsets, system rankings stable

® No provision for relative importance of
information from target summary



A.5: ROUGE

e ROUGE

® a bevy of automatic content overlap-based methods
® built by analogy, of course, to BLEU
® n-gram co-occurrence; LCS; W-LCS; skip-bigram;

® NB that some of these measures implicitly give higher scores
to summaries that contain text-chunks present in multiple
reference summaries

® Shown to correlate well with DUC manual method given
> 30 single-docsets, or > 4 multi-docsets

® Multiple references may stabilize scores sooner,
but going from |->2 actually destabilizes in some cases

® Q:ls there any reason to prefer fewer, multi-ref docsets
vs. more, single-ref docsets!?



B.l:The Pyramid Method

® Designed to capture two characteristics of

summarization:

® two summaries with different content can be
equally ‘good’

® some content is more important

® Essential idea:

® Explicitly assume multiple ref’s are needed

® Find sets of text fragments in different
summaries that express approximately the
same meaning

® Use frequency as a marker of importance

® Give higher score to summaries containing
more important content



B.2: Summary Content Units

An SCU is a set of contributors that express the same meaning

In 1998 two Libyans indicted in

1991 for the Lockerbie bombing were still
in Libya. SCU #|

“The crime in question was the
Lockerbie, Scotland bombing”

Two Libyans were indicted in 1991
for blowing up a Pan Am jumbo jet over
Lockerbie, Scotland in 1988.

A ten-year deadlock over trying two
Libyans linked to the Lockerbie bombing
appears close to a conclusion.




B.2: Building the Pyramid




B.2: Building the Pyramid

® How “pyramidal” are pyramids, anyway!?




B.2: Scoring new summaries

Task: exhaustively assign the
text of the summary to
extant SCUs

(But text expressing meaning
not already in the pyramid
can be assighed to new
“singleton” SCUs)




B.2: Scoring new summaries

® Jotal Pyramid score is:

sum of weights of SCUs in target
ratio of
sum of welghts of an optimal summary
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B.3: Pyramid Method — Thoughts

® Comparison to multi-ref DUC

® how much would DUC improve with multiple
reference summaries!?
® What would Pyramid do differently?

- ® finer-grained chunking
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C.l:Automating the Pyramid Method

® Pyramid method has two main tasks:
® |.Building the pyramid
® ). Scoring new target summaries

o

8. We have focused on: tsk #2 for now
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C.2: Outline of Algorithms

® Task: exhaustively assign the text of an
incoming target summary to the extant
SCUs of a pyramid

® Outline of procedure:
® a. Enumerate all possible contributors.
® b. Match each possible contributor to the
SCU(s) expressing similar meaning
® c. Choose a covering, disjoint set of possible
contributors.



C.2: Algorithms - a

® a: Enumeration of possible contributors

(with new constraint: contiguous)

® simply ”(”;1?:ontiguous contributors

In | 1998 | two | Libyans | indicted | in | 1991 | for | the | Lockerbie | bombing

In 1998 | two Libyans | indicted in | 1991 for | the Lockerbie | bombing
In | 1998 two | Libyans indicted | in 1991 | for the | Lockerbie bombing

In 1998 two | Libyans indicted in | 1991 for the | Lockerbie bombing

In | 1998 two  Libyans | indicted in 1991 | for the  Lockerbie | bombing e

In 1998 | two Libyans indicted | in 1991 for | the Lockerbie bombing

In 1998 two Libyans | indicted in 1991 for | the Lockerbie bombing

In | 1998 two Libyans indicted | in 1991 for the | Lockerbie bombing
I

In 1998 | two Libyans indicted in | 1991 for the Lockerbie | bombing
for the Lockerbie bombing

In 1998 two Libyans indicted in 1991

etc.




C.2:Algorithms — b

b. Match each possible contributor to SCU(s)

® b. Match each possible contributor to the
SCU(s) expressing similar meaning

® This means we need a similarity metric
between contributors and sets of contributors

® Essentially a problem of cluster pairs:

single link: max of pairwise similarity
average link: mean of pairwise similarity
complete link: min of pairwise similarity
similarity to a template

multiple sequence alighment



C.2:Algorithms — b

b. Match each possible contributor to SCU(s)

® So, we first need a pairwise similarity metric

® Again, many possibilities:
® string edit distance
® ngram overlap
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C.2:Algorithms — ¢

® c.Choose a covering, disjoint set of
possible contributors.

In |




Automating the Pyramid Method: Initial Results

® ). Selection of pairwise similarity metric

® jnitial trials:

® string edit distance
® ngram overlap

PRI a great palrw:se s:mllarlty metr:c should cleanly
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C.3:Automation — Initial Results

® ). Selection of pairwise similarity metric:
string edit distance

Similarity scores of contributors fram sams SCU vs. differsnt 55 Us:d30042

B fiom =ams SCU
B fiom difsrent SCUs




C.3:Automation — Initial Results

® ). Selection of pairwise similarity metric:
word overlap

Similarity scores of contributors from same SCU s, different SCUs:d30042

from same SCU

- from different SCUs




C.3:Automation — Initial Results

® ). Selection of clustering method:
similarity of single contributor to set

incansctly chosan, and =singleton SCUsd30042

-0.% 0.8 -0.7 —0.6 1.5 -0.4 —-0.3 0.2 -0.1 Q-1

average-link (mean) single-link (max)

0
-1



C.3:Automation — Initial Results

® Putting it all together:

with string-edit-distance, single-link similarity metric

® FEvaluation:
® n-fold cross validation: hold out one
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C.3:Automation — Initial Results
Two levels of automation:

Cornralation [scu]:d30042
I I I

Spearman rank corralation:0 73333

Q

1 1 1 1 1 1 1 1
Q.1 Q.2 a3 0.4 0.5 a8 Q.7 0.8 aa
Giold standard scoma

* hand-annotated contributor

selection, automatic SCU

assighment

1

Correlation [auto] . d30042
I 1 I

1

0.9k

0.8

Q.7

Qa6

Q.5F

Q.4F

0.3

0.2k

a1k

Spearman rank corralation:0 52424

a
a

1 1 1 1 1 1
a1 0.2 a3 0.4 Q.5 a8
Gold standard scoma

* automatic contributor
selection + SCU assignment




D.l: Lots to do!

® | ots of work to be done!
® Similarity metrics
® other surface string pairwise metrics
® explore interaction with clustering method
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D.l: Lots to do!

® More data

® need to test this across many more docsets
® Dave E.is annotating more pyramids

o Try fuII aut_:omatli pyramid- bwldln
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Questions / Comments!?
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