Automation of Summary Evaluation by the Pyramid Method

Aaron Harnly
Outline

A. The Problem: Summary Evaluation
 1. Approaches
 2. Intrinsic: intuitions
 3. Challenges
 4. DUC
 5. ROUGE

B. The Pyramid Method
 1. Motivation
 2. Algorithm

C. Automation
 1. Motivation
 2. Algorithms
 3. Results so far

D. Thoughts & Future Work
A.1. Approaches

Extrinsic
- evaluate the utility of a summary in the performance of a task

- ✓ gold standard
- ✗ requires human subjects
- ✗ difficult
- ✗ time-consuming
- ✗ expensive

Intrinsic
- judge quality of summary directly, based on analysis by some set of norms

- ✓ promises generality
- ✓ can offer automation
- ✗ might not apply well
- ? which measure?
- ? requires good “norm”!
A.2: Intrinsic Evaluation – intuitions

- What characteristics do we seek in a summary?
 - **faithfulness**
 - **compactness**
 - **precision**
 - **recall**

 ➔ **low fidelity:**
 - \{1,2\}-grams; paraphrase & synonymy

 ➔ **coverage-based measures:**
 - how many of the \{sentences, words, ideas\}
 - from the model are found in the target?
A.2: Intrinsic Evaluation – intuitions

- Approaches to measuring content coverage:
 - manual v. automatic

- sentence co-selection
 - recall, kappa, sentence-rank, relative utility
 - **pros:** easy to include an “importance” measure
 - **cons:** extractive only; variation in focus

- content-based similarity
 - n-gram overlap, LCS, cosine
 - **pros:** finer-grained; easy to automate
 - **cons:** synonymy, variation in focus

- human-judged similarity
 - **pros:** overcomes challenges of synonymy
 - **cons:** reliability
A.3: Challenges

• **No single perfect summary**
 • reasonable summaries can differ in *focus*
 • strategies:
 • build a single template from multiple reference summaries
 • somehow account for “equally-good” content?

• **Content judgments**
 • disagreement by judges: how well does the target summary cover the model summary?
 • strategies:
 • oh well, just do it anyway! ;)

• **Score Stability**
 • How many {reference, test} summaries are required to reliably distinguish systems?
A.4: DUC Procedure

1. Human creates a model summary
2. Model summary is split into units (roughly clauses or EDUs)
3. Target summary is split into sentences
4. For each model unit:
 a. find all target units expressing at least some facts from this model unit
 b. assess: these target units, as a group, express x% of the meaning expressed by the model unit
5. Final score = average score across all model content units
A.4: DUC Procedure – Limitations

- Subjective assessment of “meaning coverage”
 - Lin and Hovy 2002: Judges given the same model unit and same target unit assigned identical score only 82% of time
 - > 4% had three different scores

- Single model
 - single reference summary means target summaries will be punished or rewarded by chance correspondence with model
 - experimental choice of different model causes average of {43%, 69%} change in absolute score; but over 20+ docsets, system rankings stable

- No provision for relative importance of information from target summary
A.5: ROUGE

ROUGE
- A bevy of automatic content overlap-based methods
 - Built by analogy, of course, to BLEU
 - N-gram co-occurrence; LCS; W-LCS; skip-bigram;
- NB that some of these measures implicitly give higher scores to summaries that contain text-chunks present in multiple reference summaries
- Shown to correlate well with DUC manual method given > 30 single-docsets, or > 4 multi-docsets
- Multiple references may stabilize scores sooner, but going from 1->2 actually destabilizes in some cases
- Q: Is there any reason to prefer fewer, multi-ref docsets vs. more, single-ref docsets?
B.1: The Pyramid Method

- Designed to capture two characteristics of summarization:
 - two summaries with different content can be equally ‘good’
 - some content is more important
- Essential idea:
 - Explicitly assume multiple ref’s are needed
 - Find sets of text fragments in different summaries that express approximately the same meaning
 - Use frequency as a marker of importance
 - Give higher score to summaries containing more important content
SCU #1

“The crime in question was the Lockerbie, Scotland bombing”
A: for the Lockerbie bombing
C: for blowing up ... over Lockerbie, Scotland
J: linked to the Lockerbie bombing

In 1998 two Libyans indicted in 1991 for the Lockerbie bombing were still in Libya.

Two Libyans were indicted in 1991 for blowing up a Pan Am jumbo jet over Lockerbie, Scotland in 1988.

A ten-year deadlock over trying two Libyans linked to the Lockerbie bombing appears close to a conclusion.

An SCU is a set of contributors that express the same meaning.
B.2: Building the Pyramid

- Weight 4
- Weight 3
- Weight 2
- Weight 1
B.2: Building the Pyramid

- How “pyramidal” are pyramids, anyway?
B.2: Scoring new summaries

Task: exhaustively assign the text of the summary to extant SCUs

(But text expressing meaning not already in the pyramid can be assigned to new “singleton” SCUs)
B.2: Scoring new summaries

- Total Pyramid score is:

\[
\text{ratio of } \frac{\text{sum of weights of SCUs in target}}{\text{sum of weights of an optimal summary with same # of SCUs}}
\]

or:

\[
\text{max possible with same # of target contributors}
\]

\[
\text{# of model contributors with paraphrase in target}
\]
B.3: Pyramid Method – Thoughts

- Comparison to multi-ref DUC
 - how much would DUC improve with multiple reference summaries?
- What would Pyramid do differently?
 - finer-grained chunking
 - is “means about the same” a more reliable criterion than “covers about x% of the meaning?”
C.1: Automating the Pyramid Method

- Pyramid method has two main tasks:
 1. Building the pyramid
 2. Scoring new target summaries

- We have focused on task #2 for now
C.2: Outline of Algorithms

• **Task:** exhaustively assign the text of an incoming target summary to the extant SCUs of a pyramid

• **Outline of procedure:**
 - a. Enumerate all possible contributors.
 - b. Match each possible contributor to the SCU(s) expressing similar meaning
 - c. Choose a covering, disjoint set of possible contributors.
C.2: Algorithms - a

- a: Enumeration of possible contributors (with new constraint: contiguous)
- simply \(\frac{n(n+1)}{2} \) contiguous contributors

\[
\begin{array}{|c|c|c|c|c|c|c|}
\hline
\text{In} & 1998 & \text{two} & \text{Libyans} & \text{indicted} & \text{in} & 1991 \\
\hline
\text{In} & 1998 & \text{two} & \text{Libyans} & \text{indicted} & \text{in} & 1991 \\
\hline
\text{In} & 1998 & \text{two} & \text{Libyans} & \text{indicted} & \text{in} & 1991 \\
\hline
\text{In} & 1998 & \text{two} & \text{Libyans} & \text{indicted} & \text{in} & 1991 \\
\hline
\text{In} & 1998 & \text{two} & \text{Libyans} & \text{indicted} & \text{in} & 1991 \\
\hline
\text{In} & 1998 & \text{two} & \text{Libyans} & \text{indicted} & \text{in} & 1991 \\
\hline
\text{In} & 1998 & \text{two} & \text{Libyans} & \text{indicted} & \text{in} & 1991 \\
\hline
\text{In} & 1998 & \text{two} & \text{Libyans} & \text{indicted} & \text{in} & 1991 \\
\hline
\end{array}
\]

etc.
b. Match each possible contributor to SCU(s) expressing similar meaning

- This means we need a similarity metric between contributors and sets of contributors

- Essentially a problem of cluster pairs:
 - single link: max of pairwise similarity
 - average link: mean of pairwise similarity
 - complete link: min of pairwise similarity
 - similarity to a template
 - multiple sequence alignment
C.2: Algorithms – b

b. Match each possible contributor to SCU(s)

• So, we first need a pairwise similarity metric
• Again, many possibilities:
 • string edit distance
 • ngram overlap
 • centroid
 • SIMFINDER
 • tree edit distance of dependency parse?
C.2: Algorithms – c

- c. Choose a covering, disjoint set of possible contributors.

 obvious answer: a DP algorithm selecting the best contributor set for the first i words

 but beware of constraint relaxations!
Automating the Pyramid Method: Initial Results

2. Selection of pairwise similarity metric
 - initial trials:
 - string edit distance
 - ngram overlap
 - a great pairwise similarity metric should cleanly separate contributors known to be in the same SCU from those known to be in different SCUs
C.3: Automation – Initial Results

- 2. Selection of pairwise similarity metric: string edit distance
C.3: Automation – Initial Results

- 2. Selection of pairwise similarity metric: word overlap
C.3: Automation – Initial Results

2. Selection of clustering method: similarity of single contributor to set

- average-link (mean)
- single-link (max)
C.3: Automation – Initial Results

- Putting it all together:
 with string-edit-distance, single-link similarity metric

- Evaluation:
 - *n*-fold cross validation: hold out one summary at a time; score it against pyramid built with the rest of the summaries
 - Spearman’s rank correlation to the human-annotated pyramid scores
C.3: Automation – Initial Results

Two levels of automation:

* hand-annotated contributor selection, automatic SCU assignment

* automatic contributor selection + SCU assignment
D.1: Lots to do!

- Lots of work to be done!
- Similarity metrics
 - other surface string pairwise metrics
 - explore interaction with clustering method
- SCU selection
 - right now we assign each contributor to its “best fit” SCU
 - but perhaps allowing n-bests would give the DP contributor selection more flexibility?
D.1: Lots to do!

- More data
 - need to test this across many more docsets
 - Dave E. is annotating more pyramids

- Try full automation: pyramid-building
 - clustering possible contributors
 - should try it and see what comes out!
Questions / Comments?