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1 Examples of chunks

Fat chunks: base NPs

De liberale minister van Justitie

Marc Verwilghen is geen kandidaat op

de lokale VLD-lijst bij

de komende gemeenteraadsverkiezingen in

Dendermonde .

{(1, 3), (5, 5), (6, 7), (9, 10), (12, 14), (16, 18), (20, 20)}



Lean chunks: named entities

De liberale minister van Justitie

Marc Verwilghen is geen kandidaat op de lokale

VLD-lijst bij de komende

gemeenteraadsverkiezingen in Dendermonde .

G = {(5, 5), (6, 7), (14, 14), (20, 20)}



2 Evaluation

• Number of true positives:

|G ∩H|

• Precision P :
|G ∩H|
|H|

• Recall R:
|G ∩H|
|G|



The standard definitions of precision and recall

ignore the limiting cases where G = ∅ or H = ∅.

Gloss over this detail by redefining the following

indeterminate form:

0

0

def
= 1



3 Evaluation example

Gold standard: De liberale minister van Justitie

Marc Verwilghen is geen kandidaat op de lokale

VLD-lijst bij de komende g23n in Dendermonde .

Hypothesis: De liberale minister van

Justitie Marc Verwilghen is geen kandidaat op de

lokale VLD-lijst bij de komende

gemeenteraadsverkiezingen in Dendermonde .

P =
2

3
R =

2

4



4 The overall tasks

1. Given unlabeled text, find all the chunks

(maximize recall) and only the chunks

(maximize precision).

2. Given labeled text, infer the best possible

chunker (perhaps to an approximation).

Do not lose sight of these overall tasks!



5 The task-specific loss function

Effectiveness measure E (van Rijsbergen, 1974):

E = 1−
1

α 1
P

+ (1− α) 1
R

For α = 0.5 this amounts to

E =
|G ∪H −G ∩H|

|G|+ |H|

The goal is to minimize this loss, in a sense to be

made precise.



6 The central reduction

1. Treat the processing task as a sequence

labeling task.

2. Treat the learning task as a sequence learning

task.

Do this by annotating each token with a label

drawn from the set

Γ = {I,O,B}

using the IOB2 annotation scheme (Ratnaparkhi,

1998; Tjong Kim Sang and Veenstra, 1999).



De liberale minister van Justitie

Marc Verwilghen is geen kandidaat op de lokale

VLD-lijst bij de komende

gemeenteraadsverkiezingen in Dendermonde .



De liberale minister van Justitie

Marc Verwilghen is geen kandidaat op de lokale

VLD-lijst bij de komende

gemeenteraadsverkiezingen in Dendermonde .

becomes

De/O liberale/O minister/O van/O Justitie/B

Marc/B Verwilghen/I is/O geen/O kandidaat/O

op/O de/O lokale/O VLD-lijst/B bij/O de/O

komende/O gemeenteraadsverkiezingen/O in/O

Dendermonde/B ./O



Formally, this is a mapping from a word sequence

w plus a set of non-overlapping chunks to w plus a

label sequence x.

The set of valid IOB2 label sequences is the

following star-free language:

{O,B}Γ∗ − Γ∗{OI}Γ∗



Formally, this is a mapping from a word sequence

w plus a set of non-overlapping chunks to w plus a

label sequence x.

The set of valid IOB2 label sequences is the

following star-free language:

{O,B}Γ∗ − Γ∗{OI}Γ∗

The number of label sequences of length n is

Θ((φ + 1)n)

where φ = (1 +
√

5)/2 is the Golden Ratio.



7 The sequence labeling tasks

A supervised instance consists of a sequence of

words w = (w1, . . . , wn) together with a

corresponding sequence of labels x = (x1, . . . , xn).

Note that |w| = |x|. This is what makes the

present task relatively straightforward, compared

to e.g. speech recognition.

The processing task consists of finding a label

sequence x given a word sequence w. The learning

task consists of inferring a suitable model on the

basis of training samples of the form (w, x).



We want to model the probability of a label

sequence x given a word sequence w. We can do

so indirectly via a generative model, e.g. an HMM

Pr(w, x) =
n∏

i=1

Pr(wi | xi)× Pr(xi | xi−1)



We want to model the probability of a label

sequence x given a word sequence w. We can do

so indirectly via a generative model, e.g. an HMM

Pr(w, x) =

n∏
i=1

Pr(wi | xi)× Pr(xi | xi−1)

or directly, using a conditional model

Pr(x | w) =
n∏

i=1

Pr(xi | xi−1, w)

(Ratnaparkhi, 1998; Bengio, 1999; McCallum

et al., 2000). The precise choice of model does

not matter at this point.



8 Loss and utility

Given label sequences x and y, define the following

concepts:

• tp(x, y) is the number of matching chunks

(true positives) shared by x and y;

• m(x) is the number of chunks in x;

• P (x | y) = tp(x, y)/m(x) is precision;

• R(x | y) = tp(x, y)/m(y) is recall;



Van Rijsbergen’s loss function E with α ∈ [0; 1]

Eα(x | y) = 1−
(

α
1

P (x | y)
+ (1− α)

1

R(x | y)

)−1



Van Rijsbergen’s loss function E with α ∈ [0; 1]

Eα(x | y) = 1−
(

α
1

P (x | y)
+ (1− α)

1

R(x | y)

)−1

is replaced by Fβ = 1− E1/(β+1) with β ∈ [0;∞]:



Van Rijsbergen’s loss function E with α ∈ [0; 1]

Eα(x | y) = 1−
(

α
1

P (x | y)
+ (1− α)

1

R(x | y)

)−1

is replaced by Fβ = 1− E1/(β+1) with β ∈ [0;∞]:

Fβ(x | y) =

(
1

β + 1

m(x)

tp(x, y)
+

β

β + 1

m(y)

tp(x, y)

)−1



Van Rijsbergen’s loss function E with α ∈ [0; 1]

Eα(x | y) = 1−
(

α
1

P (x | y)
+ (1− α)

1

R(x | y)

)−1

is replaced by Fβ = 1− E1/(β+1) with β ∈ [0;∞]:

Fβ(x | y) =

(
1

β + 1

m(x)

tp(x, y)
+

β

β + 1

m(y)

tp(x, y)

)−1

=
(β + 1) tp(x, y)

m(x) + β m(y)



Van Rijsbergen’s loss function E with α ∈ [0; 1]

Eα(x | y) = 1−
(

α
1

P (x | y)
+ (1− α)

1

R(x | y)

)−1

is replaced by Fβ = 1− E1/(β+1) with β ∈ [0;∞]:

Fβ(x | y) =

(
1

β + 1

m(x)

tp(x, y)
+

β

β + 1

m(y)

tp(x, y)

)−1

=
(β + 1) tp(x, y)

m(x) + β m(y)

Instead of minimizing the loss function E, one can

maximize the utility function F .



9 Expected utility

Because the state of the world, y, is not known

exactly and only specified by Pr(y), we take

(conditional) expectations:

• E[tp(x, ·)] =
∑

y tp(x, y) Pr(y | w) is the expected

number of true positives;

• E[P (x | ·)] = 1/m(x)
∑

y tp(x, y) Pr(y | w) is the

expected precision;

• E[R(x | ·)] =
∑

y tp(x, y)/m(y) Pr(y | w) is the

expected recall;



Most importantly,

U(x | w; θ) = E[Fβ(x | ·)]

= (β + 1)
∑

y

tp(x, y)

m(x) + β m(y)
Pr(y | w; θ)

is the expected utility of a label sequence x given

a word sequence w.

This is the objective (as a function of x) we want

to maximize when searching for the best

hypothesis, according to the Bayes Decision Rule

(see e.g. Duda et al., 2000).



10 The processing task

• Assume a fully specified probability model

with known parameter vector θ has been fixed.

• Given a word sequence w, we want to find

chunks. (That’s the overall task.)

• Finding chunks has been reduced to assigning

a label sequence.

• Assign (“decode”) the label sequence

x̂ = argmax
x

U(x | w; θ)



Often in the NLP literature, the decoding step is

replaced by

x̃ = argmax
x

Pr(x | w; θ)

This would be correct for an original sequence

labeling task where it is important to find the

correct labels (under 0–1 loss).

Here, however, sequence labeling arose from a

transformation of the underlying chunking task.

The loss/utility function of the overall task should

be respected, which leads to maximum expected

utility decoding.



11 A toy example

Assume that Pr(y | w) is supplied by a bigram

model over labels (which does not take word

sequences into account at all):

Pr(y | w) = b(y1 |O; θ)

|y|∏
i=2

b(yi | yi−1; θ),

where b is as follows:

b( I | I ; θ) = b( I |O; θ) = 0 b( I | B; θ) = θ2

b(O | I ; θ) = b(O |O; θ) = θ b(O | B; θ) = 1− θ2

b(B | I ; θ) = b(B |O; θ) = 1− θ b(B | B; θ) = 0.
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Suppose the gold standard was OOB. How would

the decoded hypotheses fare?

x P (x |OOB) R(x |OOB) F3(x |OOB)

OOO 0/0 0/1 0.00

OBO 0/1 0/1 0.00

BOO 0/1 0/1 0.00

BBB 1/3 1/1 0.67

BOB 1/2 1/1 0.80

OOB 1/1 1/1 1.00

What value of θ should we pick when confronted

with the training sample OOB?
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12 The learning task

• Assume a partially specified probability model

with unknown parameter vector θ.

• Given a word sequence w plus corresponding

label sequence x, we want to estimate θ.

• Derive a point estimate of θ as

θ̂ = argmax
θ

U(x | w; θ)



In the NLP literature, the estimation step is

replaced by

θ̃ = argmax
θ

Pr(x | w; θ)

This would be optimal for the isolated sequence

learning problem under some additional

assumptions.

Speech recognition appears to be the only allied

field that has pursued minimum risk (= maximum

expected utility) parameter estimation.

Foundational questions about the use of MEU

estimation remain.



13 The algorithmic challenge

Recap:

Decoding: argmax
x

U(x | w; θ)

Estimation: argmax
θ

U(x | w; θ)

where

U(x | w; θ) ∝
∑

y

tp(x, y)

m(x) + β m(y)
Pr(y | w; θ)

At the very least, we need to be able to evaluate

U(x | w; θ) efficiently.



14 The solution in a nutshell

Express the relevant computations as weighted

state machines. Combine algorithms from formal

language and graph theory to compute expected

utility.

• Many useful probability models (HMMs,

CMMs) can be viewed as stochastic finite

state machines.

• The computation of matching chunks (true

positives) can be carried out by two-tape

state machines.



• The counting of chunks can be carried out by

one-tape state machines.



• The counting of chunks can be carried out by

one-tape state machines.

Let S and T be two finite state transducers over a

common alphabet. Then their composition S ◦ T

carries out the following computation:

[S ◦ T ](x, z) =
∑

y

[S](x, y)× [T ](y, z)

The expectations we want to compute are exactly

of this form. They will be computed by

composition of the elementary machines outlined

above.



15 Counting matching chunks

What constitutes a matching chunk?

B : B ( I : I )∗ ($ : $ | O : O | O : B | B : O | B : B)

Could use the counting technique from (Allauzen

et al., 2003):

b:b o:o, o:b,

b:o, b:b

i:iΓ× Γ Γ× Γ

Nondeterminism is a bit problematic.



i:o, i:b,
o:i, b:i

i:i
i:i, i:o, i:b,
o:i, o:o, o:b,
b:i, b:o

o:o, o:b, b:o

b:b

1 1

i:o, i:b,
o:i, b:i

i:i

b:b

i:i, i:o, i:b,
o:i, o:o, o:b,
b:i, b:o

o:o, o:b, b:o

b:b

2 2

i:o, i:b,
o:i, b:i

i:i

b:b

i:i, i:o, i:b,
o:i, o:o, o:b,
b:i, b:o

o:o, o:b, b:o

b:b

3 3

i:i, i:o, i:b,
o:i, o:o, o:b,
b:i, b:o

0



i:o, i:b,
o:i, b:i

i:i
i:i, i:o, i:b,
o:i, o:o, o:b,
b:i, b:o

o:o, o:b, b:o

b:b

1 1

i:o, i:b,
o:i, b:i

i:i

b:b

i:i, i:o, i:b,
o:i, o:o, o:b,
b:i, b:o

o:o, o:b, b:o

b:b

2 2

i:o, i:b,
o:i, b:i

i:i

b:b

i:i, i:o, i:b,
o:i, o:o, o:b,
b:i, b:o

o:o, o:b, b:o

b:b

3 3

i:i, i:o, i:b,
o:i, o:o, o:b,
b:i, b:o

0



An infinite state automaton T ; deterministic when

reading both tapes simultaneously.

A state is a tuple

(ct , match)

where ct is the current number of matching

chunks (true positives) and match is a Boolean

variable indicating whether a potentially matching

chunk is currently open.

Can compute tp(x, y) as [T ](x, y). This requires

expanding at most (|x|+ 1)× (2 tp(x, y) + 1) states,

which is O(|x|2) in the worst case.



16 Computing expected precision

Expected precision:

E[P (x | ·)] = 1/m(x)
∑

y

tp(x, y) Pr(y | w)

Assume the probability model can be represented

as a transducer Q. Then the expected number of

true positives can be computed by T ◦Q:

[T ◦Q](x, w) =
∑

y

[T ](x, y)× [Q](y, w)

=
∑

y

tp(x, y) Pr(y | w)



17 Counting chunks

Simply count occurrences of the label B on the

second tape, essentially ignoring the first tape:

Γ:b

Γ:i, Γ:oΓ:i, Γ:o

Γ:b

Γ:i, Γ:o

Γ:b

Γ:i, Γ:o

0 1 n

Call this transducer M .



18 Computing expected recall

Expected recall:

E[R(x | ·)] =
∑

y

tp(x, y)

m(y)
Pr(y | w)

We need a composition-like operation, but defined

on the codomain of transducers, rather than their

domain. If A and B are transducers, let A � B

have the following behavior:

[A � B](x, y) = ([A](x, y), [B](x, y))

A � B can be constructed as the composition of



transducers derived from A and B (without any

increase in size).

Let T and M as defined before. Then T � M is

essentially a transducer with states of the form

(ct , match, cm)

where ct and match play the same role as in T and

cm is the number of chunks seen so far on the

second tape.

Abusing notation, we can say that (T � M) ◦Q

computes the probabilities of all (ct , cm)

combinations.



19 Computing expected utility

Expected F -measure:

U(x | w; θ) = (β + 1)
∑

y

tp(x, y)

m(x) + β m(y)
Pr(y | w; θ)

This computation is structurally the same as the

computation of expected recall, since m(x) and β

are constants.

The number of states explored when the

probability model is first-order Markov is at most

(|x|+ 1)× (2m(x) + 1)× (|x|+ 1)× 3, which is O(|x|3).



20 Parameter estimation

Under reasonable assumptions about the

probability model, we can also express

∂

∂θj
U(x | w; θ)

= (β + 1)
∑

y

tp(x, y)

m(x) + β m(y)
×

∂

∂θj
Pr(y | w; θ)

in terms of state machines. This is sufficient for

maximizing θ using conjugate gradient or similar

multidimensional optimization algorithms.



21 Decoding

Contrast:

Decoding: argmax
x

U(x | w; θ)

Estimation: argmax
θ

U(x | w; θ)

Decoding appears to be more difficult than

estimation, since it involves a combinatorial

optimization step over exponentially many

hypotheses x. Doing this naively is tractable in

many practical cases.



22 Conclusion

• General lesson: Need to be careful not to lose

track of the overall evaluation criterion when

reducing a processing/learning problem to a

more familiar one.

• For chunking, label sequence models need to

be informed by the loss/utility function

associated with the chunking task.

• Expected utility and its parameter gradient

can be evaluated in cubic time. This makes

MEU parameter estimation feasible.



23 Open problems

An NFA A is unambiguous if every string accepted

by A is accepted by exactly one path through A.

Problem: Given an acyclic NFA A, find an

equivalent unambiguous NFA B which is at most

polynomially larger than A.

If this problem can be solved for the present case,

efficient decoding is possible.
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