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Motivation

◦ Item counts are commonly used in NLP as

independent variables in many applications:

information retrieval, topic detection and tracking,

text categorization, among many others.

◦ Generative models are in widespread use. Such

models make predictions about the distribution of

word counts, word and document lengths, etc.

◦ Parametric models are equally widespread. Their

assumptions need to be checked against data.



What this talk is about

◦ Accurately modeling discrete properties of text

documents, such as length, word frequencies, etc.

◦ Focus on word frequency in documents.

◦ Claim 1: In addition to overdispersion, variation of

word frequency across documents is largely due to

zero-inflation.

◦ Claim 2: Modeling zero-inflation is often preferable

to modeling overdispersion.



What this talk is not about

◦ Estimating the probabilities of unseen words.

Instead, focus on words that occur zero times

in most documents (true of most words!), but do

occur a few times in a small number of documents.

◦ State-of-the-art text classification. Text classifica-

tion using an independent feature model is used

merely for illustration, since it is simple and

benefits from richer models for individual features.



Parametric models

◦ Encode all properties of a distribution in (typically)

very few parameters.

◦ Easy to incorporate prior information about

plausible values for parameters.

◦ Can work with very small amounts of data.

◦ Can work with sparse data.

◦ Often closed form expressions are available for

moments, probabilities, percentiles, etc.



Linguistic count data

◦ Focus on modeling document length and word

frequency in documents.

◦ Sample sizes are often small: most words are

extremely rare and most documents are fairly short.

◦ Overdispersion: natural variation not well captured

by simple models with very few parameters.

◦ Zero-inflation: most words occur zero times in a

given document; not captured by standard models.



Claim 1

◦ Overdispersed models can capture increased

variance of token frequency [Mosteller and Wallace

1964, 1984; Church and Gale 1995].

◦ Zero-inflation accounts for variation not captured

by overdispersed models.

◦ Need to develop a zero-inflated extension of a

robust, overdispersed model of token frequency.

◦ Zero-inflation can be observed in M&W’s data.



Poisson family models

Start with the Poisson distribution with rate λ > 0:

Poisson(λ)(x) =
λx

x!
exp(−λ).

A natural generalization of the Poisson is the

Negative Binomial distribution, with an additional

parameter κ > 0 that controls non-Poissonness:

NegBin(λ, κ)(x) =
λx

x!

κκ

(λ + κ)κ

Γ(κ + x)

Γ(κ)(λ + κ)x



Poisson(λ) NegBin(λ, κ)

Mean µ λ = λ

Variance σ2 λ ≤ λ (1 + λ/κ)

Skewness γ1
1√
λ

≤ 1√
λ

κ + 2λ
√

κ (λ + κ)

Kurtosis γ2
1

λ
≤ 1

λ

κ

λ + κ
+

6

κ

Mode bλc ≥ bλ (1 − 1/κ)c if κ ≥ 1

0 if 0 < κ < 1



Example: Subject lines of spam email
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Detailed examples

◦ Mosteller and Wallace’s [1964, 1984] data, taken

from The Federalist papers.

◦ Essays by Alexander Hamilton and James Madison

(and John Jay) on the shape of the proposed US

constitution.

◦ M&W sampled approx. 250 contiguous passages

of equal length for each of the two main authors.



Some words follow the Poisson
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Some words follow the Neg. Binomial
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And some words are special

For example ‘his’ (Hamilton and Madison pooled) in

Mosteller and Wallace’s data.

The method of maximum likelihood leads to

NegBin(0.54, 0.15). Here’s what that model has

to say:

0 1 2 3 4 5 6 7 8 14

obsrvd 405 39 26 18 5 4 5 3 3 1

expctd 404 48 22 12 7 5 3 2 2 0



Alternatively, we could have estimated the

parameters based on: (a) the number of documents

with zero occurrences of ‘his’; and (b) the number

of documents with one occurrence of ‘his’. Not

surprisingly, the resulting model, NegBin(0.76, 0.11),

is worse:

0 1 2 3 4 5 6 7 8 14

obsrvd 405 39 26 18 5 4 5 3 3 1

expctd 405 39 19 12 8 6 4 3 2 1
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Adaptation, burstiness and all that

Church [2000]: “The first mention of a word

obviously depends on frequency, but surprisingly,

the second does not. Adaptation [the degree to

which the probability of a word encountered in recent

context is increased] depends more on lexical content

than frequency[.]”

Church, concerned mostly with empirical exploration,

used nonparametric methods. How can his findings

be incorporated into a parametric setting?



A modest proposal
Whether a given word appears at all in a document

is one thing. How often it appears, if it does, is

another thing.

Not all words are appropriate in a given context

(taboo words, technical jargon, proper names). A

writer’s/speaker’s active vocabulary is limited and

idiosyncratic (‘(tom/pot)atos’/‘(tom/pot)atoes’).

We insist on capturing non-zero occurrences with

parametric models, but treat zeroes specially.
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A concrete modest proposal
Two-component mixture: first component is a

degenerate distribution at zero (or possibly a

geometric distribution starting at zero); second

component a standard distribution F with parameter

vector θ, e. g. from the Poisson or Binomial family.

ZIF(z, θ)(x) = z(x ≡ 0) + (1 − z)F(θ)(x)

where 0 ≤ z ≤ 1 (z < 0 may be allowable).



Properties of ZIF
If F(θ) has mean µ and variance σ2, then ZIF(z, θ)

has mean

(1 − z) µ

and variance

(1 − z) (σ2 + z µ2).

Furthermore, ZIF(z, θ) has the same modes as F(θ)

plus potentially an additional mode at zero.



Zero-inflated distributions

Straightforward interpretation of generative process:

pretend there is a z-biased coin; flip coin; on heads,

generate 0; on tails, generate according to F .

If parameter vector θ of F can be estimated

straightforwardly, use EM to estimate z and θ.

Otherwise use multidimenisional maximization

algorithms.



ZINB model for ‘his’

Recall that a NegBin model can already account

for the fact that most of the probability mass is

concentrated at zero. Can a zero-inflated NegBin

(ZINB) model do better?

Note that the maximum likelihood models for

the distribution of ‘his’ in M&W’s data say very

different things, even though the net effects may be

superficially similar.



The NegBin model claims that ‘his’ occurs much less

than once on average (0.54 expected occurrences)

and that it has large variance.

The ZINB model claims that ‘his’ occurs in only a

third of all passages, but within those its expected

number of occurrences is 1.56 and its variance is less

than that predicted by the NegBin model.
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NegBin ZINB

obsrvd expctd expctd

0 405 403.853 405.000

1 39 48.333 40.207

2 26 21.686 24.206

3 18 12.108 14.868

4 5 7.424 9.223

5–6 9 8.001 9.361

7–14 7 6.996 5.977

χ2 q-value 0.832 0.601

− log L(θ̂) 441.585 439.596



Comparison of Poisson models

x ∼ Poisson(λ)

µ = λ

σ2 = λ = µ

x ∼ NegBin(λ, κ) x ∼ ZIPoisson(z, λ)

µ = λ, µ = (1 − z) λ,

σ2 = λ (1 + λ
κ) σ2 = µ (1 + z λ)

x ∼ ZINegBin(z, λ, κ)



Comparison of Binomial models

x | n ∼ Binom(p)

µ = n p

σ2 = n p (1 − p) = µ q

x | n ∼ BetaBin(p, γ) x | n ∼ ZIBinom(z, p)

µ = n p µ = (1 − z) n p

σ2 = µ q (1 + (n − 1)γ) σ2 = µ (q + z n p)

x | n ∼ ZIBetaBin(z, p, γ)



The “Naive Bayes” classifier

We would like to have a distribution over a random

variable C (class labels) conditional on independent

variables X1, . . . , Xk and parameters θ:

P (C | X1, . . . ,Xk; θ) ∝ P (C, X1, . . . ,Xk | θ)

Assume a graphical model where the only edges are

from C to Xi for i = 1, . . . , k. In other words:

P (C, X1, . . . , Xk | θ) = P (C | θ)

k
∏

i=1

P (Xi | C; θ)



For document classification, the independent

variables Xi range over counts. In addition, we can

condition on the document length L. For example:

P (Xi = x | L = n,C = j; θ)

=

(

n

x

)

(θij)
x (1 − θij)

(n−x)

Training consists of finding a point estimate of θ.

Classification is done by selecting the most probable

class, conditional on the values of the independent

variables and the estimated θ̂.



Effects on classification performance

McCallum and Nigam [1998] compared multivariate

Bernoulli and multinomial models. We compare

(joint independent) Bernoulli, binomial, beta-

binomial, and zero-inflated binomial models.

Bernoulli model can be interpreted as binning

(nonparametric historgram method) into two

dominant classes: zero and nonzero. Zero-inflated

binomial should be able to combine advantages of

Bernoulli and detail of binomial model.



“naive” “standard”

Poisson 1 Negative Binomial 2

Binomial 1 Beta-Binomial 2

Multinomial k Dirichlet-Multinomial k+1

McCallum and Nigam recommended Bernoulli for

small vocabulary sizes; we recommend ZIBinomial.



Newsgroups data set

20 Newsgroups data set, stratified so that all classes

are equally likely a priori, therefore 5% baseline

accuracy.
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Binom ZIB McNemar

10 21.61 23.00 7.99

20 28.19 29.93 9.57

50 44.04 45.15 6.51

100 52.57 54.16 13.12

200 60.15 61.16 4.69

500 68.30 68.58 0.36

1000 72.24 73.20 5.00

2000 75.92 77.03 6.38

5000 80.64 80.19 1.07

10000 82.61 82.58 0.00

20000 83.70 83.06 2.68



WebKB data set

Web pages from CS departments, classified as

faculty, student, course, and project pages. 4200

documents total.
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Claim 2

◦ Zero-inflated models perform no worse than

overdispersed models.

◦ Standard zero-inflated models are easier to work

with, since EM can be used for parameter

estimation.

◦ Modeling zero-inflation is preferable to modeling

overdispersion, at least for Naive Bayes document

classification.



Longer documents

‘Tom’ in Project Gutenberg books (15k–25k words).

No surprises initially:

0 1 2 3 4 5 6 7 8

313 54 19 11 8 7 5 3 1

But the tail is very long:

71 74 78 102 620

1 1 1 1 1



Document lengths

Document length in newsgroup data is non-negative,

heavily skewed to the right, and seems to be

unimodal (unlike newswire). Approximated well by

log-logistic density:

LogLogistic(µ, σ, δ)(x) =
δ
(

x−µ
σ

)δ−1

σ
[

1 +
(

x−µ
σ

)δ
]2

CDF easy to invert (unlike log-normal), pth



percentile point is:

µ + σ

(

p

1 − p

)1/δ

Leave µ fixed, estimate remaining two parameters

from tertile points:

σ̂ =
√

t1 − µ
√

t2 − µ

δ̂ = 2 log 2
log(t2−µ)−log(t1−µ)
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Language modeling

Traditionally done using Markov chains. For

example, a bigram model over {a, b}∗:

aa b

b

a

b

a

b



Word length

Markov chains are poor models of word length. As a

model of word length, a bigram model degenerates

to a (shifted) geometric distribution:

1-p 1-q
p

q



Pascal distribution

The geometric distribution can be generalized to the

Pascal distribution, which is a special case of the

Negative Binomial with κ an integer.

NegBin(λ, κ)(x)

=
λx

x!

κκ

(λ + κ)κ

Γ(κ + x)

Γ(κ)(λ + κ)x

=

(

x + κ − 1

x

) (

λ

λ + κ

)x (

κ

λ + κ

)κ



Reparametrize as follows:

Pascal(p, κ)(x) =

(

x + κ − 1

x

)

px (1 − p)κ

For example, when κ = 4:

p

1-p

p

1-p

p

1-p
1-p

p



Word length in the NETtalk data

Modeled by a slight variant of a Pascal model:

m

1-m

p1
1

p2
1-p1

p3
1-p2

1
1-p3

p

1-p

p

1-p

p

1-p

p

1-p
1-p

p

With κ fixed (in this case κ = 5), we can use EM to

estimate the remaining parameters.
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Conclusions

◦ Especially for parametric models, need to check

goodness of fit.

◦ Overdispersion and zero-inflation are common in

count data encountered in NLP.

◦ This affects our choice of models. For example,

exponential family models misleadingly known as

“maximum entropy” models have no provisions for

overdispersion. Use with caution.


