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Abstract

We introduce a method for transferring annotation from a syntactically annotated

corpus in a source language to a target language. Our approach assumes that only

a text corpus (without syntactic annotation) exists for the target language, and that

the parameters of the mapping between the two languages are unknown. We outline

a general probabilistic approach based on Data Augmentation, discuss the algorithmic

challenges, and present a novel algorithm for sampling from a posterior distribution

over trees.

1 Introduction

Annotated corpora are valuable resources for Natural Language Processing (NLP) which

often require significant effort to create. Syntactically annotated corpora – treebanks, for

short – currently exist for a small number of languages; but for the vast majority of the

world’s languages, treebanks are unavailable and unlikely to be created any time soon.

The situation is especially difficult for dialectal variants of many languages. A prominent

example is Arabic: syntactically annotated corpora exist for the common written variety

(Modern Standard Arabic or MSA), but the spoken regional dialects have a lower status in

written communication and lack annotated resources. Building parsers for Arabic dialects1

is thus hampered by a lack of dialect treebanks.

1Arabic dialect parsing is the topic of a summer workshop to be held at Johns Hopkins University during
July and August 2005. The techniques described in the present paper were developed in preparation for this
workshop. I would like to thank the workshop participants for helpful discussions.
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On the bright side, there exist very large unannotated [Graff, 2003] and annotated

[Maamouri et al., 2003, 2004] corpora for Modern Standard Arabic. Furthermore, unan-

notated text corpora for the various Arabic dialects can also be collected on the Internet.

Finally, the syntactic differences between the Arabic dialects and Modern Standard Arabic

are relatively minor (compared with the lexical, phonological, and morphological differences).

The overall research question is now how to combine these resources and properties to fa-

cilitate and perhaps even automate the creation of syntactically annotated corpora for the

Arabic dialects.

We describe a general approach to this problem, which we call treebank transfer : the goal

is to project an existing treebank, which exists in a source language, to a target language

which lacks annotated resources. The approach we describe is not tied in any way to Ara-

bic, though for the sake of concreteness one may equate the source language with Modern

Standard Arabic and the target language with a dialect such as Egyptian Colloquial Arabic.

We link the two kinds of resources that are available – a treebank for the source language

and an unannotated text corpus for the target language – in a generative probability model.

Specifically, we construct a joint distribution over source-language trees, target-language

trees, as well as parameters which allows us to draw inferences by iterative simulation. This

allows us to impute target-language trees, which can then be used to train target-language

parsers and other NLP components.

Our approach does not require aligned data, unlike related proposals for transferring an-

notations from one language to another. For example, Yarowksy and Ngai [2001] consider

the transfer of word-level annotation (part-of-speech labels and bracketed NPs). Their ap-

proach is based on aligned corpora and only transfers annotation, as opposed to generating

the raw data plus annotation as in our approach.

We describe the underlying probability model of our approach in Section 2 and discuss

issues pertaining to simulation and inference in Section 3. Sampling from the posterior

distribution of target-language trees is one of the key problems in iterative simulation for

this model. We present a novel sampling algorithm in Section 4. Finally in Section 5 we

summarize our approach in its full generality.

2 The Probability Model

Our approach assumes that two kinds of resources are available: a source-language treebank,

and a target-language text corpus. This is a realistic assumption, which is applicable to
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many source-language/target-language pairs. Furthermore, some knowledge of the mapping

between source-language syntax and target-language syntax needs to be incorporated into

the model. Parallel corpora are not required, but may help when constructing this mapping.

We view the source-language treebank as a sequence of trees S1, . . . , Sn, and assume that

these trees were generated by a common process from a corresponding sequence of latent

target-language trees T1, . . . , Tn. The parameters of the process which maps target-language

trees to source-language trees will be denoted by Ξ. The mapping itself is expressed as a

conditional probability distribution p(Si | Ti, Ξ) over source-language trees. The parameter

vector Ξ is assumed to be generated from a prior distribution p(Ξ | ξ) with hyper-parameters

ξ, assumed to be fixed and known.

We further assume that each target-language tree Ti was generated from a common

language model Λ for the target language, p(Ti | Λ). For expository reasons we assume

that Λ is a bigram language model over the terminal yield (also known as the fringe) of Ti.

Generalizations to higher-order n-gram models are completely straightforward; more general

models that can be expressed as stochastic finite automata are also possible, as discussed in

Section 5. Let t1, . . . , tk be the terminal yield of tree Ti. Then

p(Ti | Λ) = Λ(t1 | #)

(
k∏

j=2

Λ(tj | tj−1)

)
Λ($ | tk),

where # marks the beginning of the string and $ marks the end of the string.

There are two options for incorporating the language model Λ into the overall probability

model. In the first case – which we call the full model – Λ is generated by an informative

prior distribution p(Λ | λ) with hyper-parameter λ. In the second case – the reduced model

– the language model Λ is fixed.

The structure of the full model is specified graphically in Figure 1. In a directed acyclic

graphical model such as this one, we equate vertices with random variables. Directed edges

are said to go from a parent to a child node. Each vertex depends directly on all of its

parents. Any particular vertex is conditionally independent from all other vertices given its

parents, children, and the parents of its children.

The portion of the full model we are interested in is the following factored distribution,

as specified by Figure 1:

p(S1, . . . , Sn, T1, . . . , Tn, Λ, Ξ | λ, ξ) = p(Λ | λ) p(Ξ | ξ)
n∏

i=1

p(Ti | Λ) p(Si | Ti, Ξ) (1)
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Figure 1: The graphical structure of the full probability model. Bold circles indicate observed
variables, dotted circles indicate parameters.

In the reduced model, we drop the leftmost term/vertex, corresponding to the prior for Λ

with hyper-parameter λ, and condition on Λ instead:

p(S1, . . . , Sn, T1, . . . , Tn, Ξ | Λ, ξ) = p(Ξ | ξ)
n∏

i=1

p(Ti | Λ) p(Si | Ti, Ξ) (2)

The difference between the full model (1) and the reduced model (2) is that the reduced

model assumes that the language model Λ is fixed and will not be informed by the latent

target-language trees Ti. This is an entirely reasonable assumption in a situation where the

target-language text corpus is much larger than the source-language treebank. This will

typically be the case, since it is usually very easy to collect large corpora of unannotated

text which exceed the largest existing annotated corpora by several orders of magnitude.

When a sufficiently large target-language text corpus is available, Λ is simply a smoothed

bigram model which is estimated once from the target-language corpus.

If the target-language corpus is relatively small, then the bigram model Λ can be refined

on the basis of the imputed target-language trees. A bigram model is simply a discrete

collection of multinomial distributions. A simple prior for Λ takes the form of a product

of Dirichlet distributions, so that the hyper-parameter λ is a vector of bigram counts. In

the full model (1), we assume λ is fixed and set it to the observed bigram counts in the

target-language text corpus. This gives us an informative prior for Λ. If the bigram counts

are sufficiently large, Λ will be fully determined by this informative prior distribution, and

the reduced model (2) can be used instead.

By contrast, usually very little is known a priori about the syntactic transfer model Ξ.
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Instead Ξ needs to be estimated from data. We assume that Ξ too is a discrete collection

of multinomial distributions, governed by Dirichlet priors. However, unlike in the case of Λ,

the priors for Ξ are noninformative. This is not a problem, since a lot of information about

the target-language is provided by the language model Λ.

As one can see in Figure 1 and equation (1), the overall probability model constrains

the latent target-language trees Ti in two ways: From the left, the language model Λ serves

as a prior distribution over target-language trees. On the one hand, Λ is an informative

prior, based on large bigram counts obtained from the target-language text corpus; on the

other hand, it only informs us about the fringe of the target-language trees and has very

little directly to say about their syntactic structure. From the right, the observed source-

language trees constrain the latent target-language trees in a complementary fashion. Each

target-language tree Ti gives rise to a corresponding source-language tree Si according to the

syntactic transfer mapping Ξ. This mapping is initially known only qualitatively, and comes

with a noninformative prior distribution.

Our goal is now to simultaneously estimate the transfer parameters Ξ and impute the

latent trees Ti. This is simplified by the following observation: if T1, . . . , Tn are known, then

finding Ξ is easy; vice versa, if Ξ is known, then finding Ti is easy. Simultaneous inference

for Ξ and T1, . . . , Tn is possible via Data Augmentation [Tanner and Wong, 1987], or, more

generally, Gibbs sampling [Geman and Geman, 1984].

3 Simulation of the Joint Posterior Distribution

We now discuss the simulation of the joint posterior distribution over the latent trees

T1, . . . , Tn, the transfer model parameters Ξ, and the language model parameters Λ. This

joint posterior is derived from the overall full probability model (1). Using the reduced model

(2) instead of the full model amounts to simply omitting Λ from the joint posterior. We will

deal primarily with the more general full model in this section, since the simplification of

the reduced model will be straightforward.

The posterior distribution we focus on is p(T1, . . . , Tn, Λ, Ξ | S1, . . . , Sn, λ, ξ), which pro-

vides us with information about all the variables of interest, including the latent target-

language trees Ti, the syntactic transfer model Ξ, and the target-language language model

Λ. It is possible to simulate this joint posterior distribution using simple sampling-based ap-

proaches [Gelfand and Smith, 1990], which are instances of the general Markov-chain Monte

Carlo method [see, for example, Liu, 2001].
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Posterior simulation proceeds iteratively, as follows. In each iteration we draw the three

kinds of random variables – latent trees, language model parameters, and transfer model pa-

rameters – from their conditional distributions while holding the values of all other variables

fixed. Specifically:

• Initialize Λ and Ξ by drawing each from its prior distribution.

• Iterate the following three steps:

1. Draw each Ti from its posterior distribution given Si, Λ, and Ξ.

2. Draw Λ from its posterior distribution given T1, . . . , Tn and λ.

3. Draw Ξ from its posterior distribution given S1, . . . , Sn, T1, . . . , Tn, and ξ.

This simulation converges in the sense that the draws of T1, . . . , Tn, Λ, and Ξ converge in

distribution to the joint posterior distribution over those variables. Further details can be

found, for example, in Liu, 2001, as well as the references cited above.

We assume that the bigram model Λ is a family of multinomial distributions, and we

write Λ(tj | tj−1) for the probability of the word tj following tj−1. Using creative notation,

Λ( · | tj−1) can be seen as a multinomial distribution. Its conjugate prior is a Dirichlet

distribution whose parameter vector λw are the counts of words types occurring immediately

after the word type w of tj−1. Under the conventional assumptions of exchangeability and/

or independence, the prior distribution for Λ is just a product of Dirichlet priors. Since we

employ a conjugate prior, the posterior distribution of Λ

p(Λ | S1, . . . , Sn, T1, . . . , Tn, Ξ, λ, ξ) = p(Λ | T1, . . . , Tn, λ)

has the same form as the prior – it is likewise a product of Dirichlet distributions. In fact,

for each word type w the posterior Dirichlet density has parameter λw + cw, where λw is the

parameter of the prior distribution and cw is a vector of counts for all word forms appearing

immediately after w along the fringe of the imputed trees.

We make similar assumptions about the syntactic transfer model Ξ and its posterior

distribution, which is

p(Ξ | S1, . . . , Sn, T1, . . . , Tn, Λ, λ, ξ) = p(Ξ | S1, . . . , Sn, T1, . . . , Tn, ξ).

In particular, we assume that syntactic transfer involves only multinomial distributions, so

that the prior and posterior for Ξ are products of Dirichlet distributions. This means that

sampling Λ and Ξ from their posterior distributions is straightforward.
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The difficult part is the first step in each scan of the Gibbs sampler, which involves

sampling each target-language latent tree from the corresponding posterior distribution. For

a particular tree Tj, the posterior takes the following form:

p(Tj | S1, . . . , Sn, T1, . . . , Tj−1, Tj+1, . . . , Tn, Λ, Ξ, λ, ξ)

= p(Tj | Sj, Ξ, Λ) =
p(Tj, Sj | Λ, Ξ)∑
Tj

p(Tj, Sj | Λ, Ξ)

∝ p(Tj | Λ) p(Sj | Tj, Ξ) (3)

The next section discusses sampling from this posterior distribution in the context of a

concrete example and presents an algorithmic solution.

4 Sampling from the Latent Tree Posterior

We are faced with the problem of sampling Tj from its posterior distribution, which is pro-

portional to the product of its language model prior p(Tj | Λ) and transfer model likelihood

p(Sj | Tj, Ξ). Rejection sampling using the prior as the proposal distribution will not work,

for two reasons: first, the prior is only defined on the yield of a tree and there are poten-

tially very many tree structures with the same fringe; second, even if the first problem could

be overcome, it is unlikely that a random draw from an n-gram prior would result in a

target-language tree that corresponds to a particular source-language tree, as the prior has

no knowledge of the source-language tree.

Fortunately, efficient direct sampling from the latent tree posterior is possible, under one

very reasonable assumption: the set of all target-language trees which map to a given source-

language tree Sj is finite and can be represented as a packed forest. Under this assumption,

there is a compact (polynomial space) representation of potentially exponentially many trees.

Moreover, each tree in the packed forest has an associated weight, corresponding to its

likelihood under the syntactic transfer model.

If we rescale the weights of the packed forest so that it becomes a normalized probabilistic

context-free grammar (PCFG), we can sample from this new distribution (corresponding to

the normalized likelihood) efficiently. For example, it is then possible to use the PCFG as a

proposal distribution for rejection sampling.

However, we can go even further and sample from the latent tree posterior directly.

The key idea is to intersect the packed forest with the n-gram language model and then to

normalize the resulting augmented forest. The intersection operation is a special case of the
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Figure 2: Binary syntax tree illustrating SVO constituent order within a sentence, and
prenominal adjectives within noun phrases.

intersection construction for context-free grammars and finite automata [Bar-Hillel et al.,

1961, pp. 171–172]. We illustrate it here for a bigram language model.

Consider the tree in Figure 2 and assume it is a source-language tree, whose root (C)

is a clause that consists of a subject (S), verb (v) and object (O). The subject and object

are noun phrases consisting of an adjective (a) and a noun (n). For simplicity, we treat the

part-of-speech labels (a, n, v) as terminal symbols and add numbers to distinguish multiple

occurrences. The syntactic transfer model is stated as a conditional probability distribution

over source-language trees conditional on target language trees. Syntactic transfer amounts

to independently changing the order of the subject, verb, and object, and changing the order

of adjectives and nouns, for example as follows:

p(SvO | SvO) = Ξ1 p(SvO | SOv) = Ξ3

p(SOv | SvO) = (1− Ξ1) Ξ2 p(SOv | SOv) = (1− Ξ3) Ξ4

p(vSO | SvO) = (1− Ξ1) (1− Ξ2) p(vSO | SOv) = (1− Ξ3) (1− Ξ4)

p(SvO | vSO) = Ξ5 p(an | an) = Ξ7 p(an | na) = Ξ8

p(SOv | vSO) = (1− Ξ5) Ξ6 p(na | an) = 1− Ξ7 p(na | na) = 1− Ξ8

p(vSO | vSO) = (1− Ξ5) (1− Ξ6)

Under this transfer model, the likelihood of a target-language tree [A v [S a1 n1][O n2 a2]] cor-

responding to the source-language tree shown in Figure 2 is Ξ5 × Ξ7 × Ξ8. It is easy to

construct a packed binary forest of all target-language trees with non-zero likelihood that

give rise to the source-language tree in Figure 2. Such a forest is shown in Figure 3 (left).
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Figure 3: Plain forest (left) and augmented forest (right).

Forest nodes are shown as ellipses, choice points as rectangles connected by dashed lines. A

forest node is to be understood as an (unordered) disjunction of the choice points directly

underneath it, and a choice point as an (ordered, indicated by numbers) conjunction of the

forest nodes directly underneath it. In other words, a packed forest can be viewed as an

acyclic and-or graph, where choice points represent and-nodes (whose children are ordered).

For nodes that dominate a single choice node, that choice node is not shown. The forest in

Figure 3 (left) represents SvO, SOv, and vSO permutations at the sentence level and an, na

permutations below the two noun phrases. The twelve overall permutations are represented

compactly in terms of two choices for the subject, two choices for the object, and three

choices for the root clause.

We intersect/compose the packed forest with the bigram language model Λ by augmenting

each node in the forest with a left context word and a right peripheral word: a node N is

transformed into a triple (a, N, b) which dominates all trees that N dominates in the original

forest and which can occur after a word a and end with a word b. The algorithm is roughly2

as follows for binary branching forests; it requires memoization (not shown) to be efficient:

forest_composition(N, a):

if N is a terminal:

return { (a,N,N) }

else:

nodes = {}

for each (L,R) in N.choices:

left_nodes <- forest_composition(L, a)

2A detailed implementation is available from http://www.cs.columbia.edu/∼jansche/transfer/.
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for each (a,L,b) in left_nodes:

right_nodes <- forest_composition(R, b)

for each (b,R,c) in right_nodes:

new_n = (a,N,c)

nodes <- nodes + { new_n }

new_n.choices <- new_n.choices + [((a,L,b), (b,R,c))]

return nodes

At the root level, we call forest_composition with a left context of # (indicating the start

of the string) and add dummy nodes of the form (a, $, $) (indicating the end of the string).

Further details can be found in the prototype implementation. Each node in the original

forest is augmented with two words; if there are n leaf nodes in the original forest, the total

number of nodes in the augmented forest will be at most n2 times larger than in the original

forest. This means that the compact encoding property of the packed forest (exponentially

many trees can be represented in polynomial space) is preserved by the composition algo-

rithm. An example of composing a packed forest with a bigram language model is shown in

Figure 3: the right panel shows the forest that results from composing the forest in the left

panel with a bigram language model.

The result of the composition is an augmented forest from which sampling is almost

trivial. The first thing we have to do is to recursively propagate weights from the leaves

upwards to the root of the forest and associate them with nodes. In the non-recursive case

of leaf nodes, their weights are provided by the bigram score of the augmented forest: observe

that leaves in the augmented forest have labels of the form (a, b, b), where a and b are terminal

symbols, and a represents the immediately preceding left context. The score of such a leaf is

simply Λ(b | a). There are two recursive cases: For choice nodes (and-nodes), their weight is

the product of the weights of the node’s children times a local likelihood score. For example,

the node (v, O, n) in Figure 3 (right) dominates a single choice node (not shown, per the

earlier conventions), whose weight is Λ(a | v) Λ(n | a) Ξ7. For other forest nodes (or-nodes),

their weight is the sum of the weights of the node’s children (choice nodes).

Given this very natural weight-propagation algorithm (and-nodes correspond to multi-

plication, or-nodes to summation), it is clear that the weight of the root node is the sum

total of the weights of all trees in the forest, where the weight of a tree is the product of the

local likelihood scores times the language model score of the tree’s terminal yield. We can

then associate outgoing normalized weights with the children (choice points) of each or-node,

where the probability of going to a particular choice node from a given or-node is equal to
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the weight of the choice node divided by the weight of the or-node.

This means we have managed to calculate the normalizing constant of the latent tree pos-

terior (3) without enumerating each individual tree in the forest. The normalization ensures

that we can sample from the augmented and normalized forest efficiently, by proceeding

recursively in a top-down fashion, picking a child of an or-node at random with probability

proportional to the outgoing weight of that choice. It is easy to see (by a telescoping prod-

uct argument) that by multiplying together the probabilities of each such choice we obtain

the posterior probability of a latent tree. We thus have a method for sampling latent trees

efficiently from their posterior distribution.

The sampling procedure described here is very similar to the lattice-based generation

procedure with n-gram rescoring developed by Langkilde [2000], and is in fact based on the

same intersection construction (Langkilde seems to be unaware that the CFG-intersection

construction from [Bar-Hillel et al., 1961] is involved). However Langkilde is interested in

optimization (finding the best tree in the forest), which allows her to prune away less probable

trees from the composed forest in a procedure that combines composition, rescoring, and

pruning. Alternatively, for a somewhat different but related formulation of the probability

model, the sampling method developed by Mark et al. [1992] can be used. However, its

efficiency is not well understood.

5 Conclusions

The approach described in this paper was illustrated using very simple examples. The

simplicity of the exposition should not obscure the full generality of our approach: it is

applicable in the following situations:

• A prior over latent trees is defined in terms of stochastic finite automata.

We have described the special case of bigram models, and pointed out how our ap-

proach will generalize to higher-order n-gram models. However, priors are not generally

constrained to n-gram models; in fact, any stochastic finite automaton can be em-

ployed as a prior, since the intersection of context-free grammars and finite automata

is well-defined. However, the intersection construction that appears to be necessary for

sampling from the posterior distribution over latent trees may be rather cumbersome if

higher-order n-gram models or when more complex finite automata are used as priors.

• The inverse image of an observed tree under the mapping from latent trees to observed
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trees can be expressed in terms of a finite context-free language, or equivalently, a

packed forest.

The purpose of Gibbs sampling is to simulate the posterior distribution of the unobserved

variables in the model. As the sampling procedure converges, knowledge contained in the

informative but structurally weak prior Λ is effectively transferred to the syntactic transfer

model Ξ. Once the sampling procedure has converged to a stationary distribution, we can

run it for as many additional iterations as we want and sample the imputed target-language

trees. Those trees can then be collected in a treebank, thus creating novel annotated syntactic

data in the target language which can be used for further processing.
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