

A Platform for Experimental Research in Critical Voice Communications

Jan Janak¹, Artiom Baloian¹, Charles Jennings², Dan Rubenstein¹, Henning Schulzrinne¹ ¹Department of Computer Science, Columbia University, ²John Jay College of Criminal Justice https://irtlab.gitlab.io/mcv-testbed

Introduction

How does the quality of the communication channel affect first responder communications?

Quality of Experience (QoE) Measures:

- Comprehension errors ► repeat transmitted messages
- Task errors
- ► wrong information recorded
- Usage errors
 - ► pressing PTT button too early or too late
- Length and latency of responses
 - ▶ pauses between requests and start of transmissions
- Subjective ratings of user experience
 - ► rated frustration with radio operation

Evaluate in experiments with volunteer human subject in a controlled environment

Four-phase approach:

- 1. Design and build a communication testbed
 - Emulate real mission critical voice (MCV) systems
- Configurable audio and network impairments
- 2. Experiment with trained first responders
- Communicate using the testbed in a controlled environment
- 3. Measure communication performance
- Analyze data collected during experiments
- 4. Build mathematical models
 - Map channel conditions to performance measures

Experimental Testbed

- Open hardware & software
- Affordable off-the-shelf components (Raspberry Pi) \bullet
- Emulates analog & digital MCV systems (P.25 Phase 1 & 2)
- Programmable audio & network impairments •
- Support for interactive and listening (at-home) experiments

Testbed Architecture

Listening Experiments

- A series of impaired audio recordings (via text-to-speech)
- Browser UI for playback & data collection
- Anti-cheat design (play once only, no pause)
- Accessible from test subjects' homes

Automated experiment and impaired audio recording generation

tart Experiment "Intelligibility Evaluation"	×	Experiment "Intelligibility Evaluation" is running
Experimenter * Jan Janak		Elapsed time: 00h 01m 04s Step 2 of 3
Test Subjects John Doe		* Please, listen carefully, identify the sound you hear, and provide your answer by selecting one of the options.
Please provide subjects separated by commas (optional)		PLAY
- Notes		Your answer O Train station
(optional)		• Train is passing by
Gender * Age *		Subway station
Male - 25		⊖ Airport
I have read and error to the Terms and Conditions		○ City street
I have read and agree to the Terms and Conditions.		NEVT STED
	CANCEL START	NEXT STEP

License Plate Transcription Experiment

- New Jersey license plates using NATO alphabet
- 48 participants x 72 trials = 3,456 total trials
- Correlated (Gilbert-Elliot model) frame loss and bit errors
- Levenshtein distance to measure license plate recording error
- Compare codec performance: P.25 Phase 2 versus AMR-WB

Codec	Condition	Levenshtein Distance
amrwb	Condition 1 - p0k1	0.344
p25p2	Condition 1 - p0k1	0.394
amrwb	Condition 2 - pgb001p001k2	0.403
p25p2	Condition 2 - pgb001p001k2	0.442
amrwb	Condition 3 - pgb001p001k4	0.479
p25p2	Condition 3 - pgb001p001k4	0.500
amrwb	Condition 4 - pgb001p001k6	0.462
p25p2	Condition 4 - pgb001p001k6	0.865

Results:

- Comparable performance until clustering factor 4
- Levenshtein distance (error measure) grows faster for P.25 with longer error bursts

Evaluation by Lauren Berny, John Jay College

Levenshtein Distance Across Burst Sizes Overall bit-error rate = 0.01

amrwb	Condition 5 - pgb001p001k8	0.536
p25p2	Condition 5 - pgb001p001k8	1.144
amrwb	Condition 6 - pgb001p001k10	0.745
p25p2	Condition 6 - pgb001p001k10	1.566

P.25p1 exhibits worse intelligibility than AMR-WB with longer bit error sequences

Interactive Experiments with EDGE*

Study the influence of delays on task and usage errors (work in progress)

* The Enhanced Dynamic Geo-Social Environment (EDGE): https://www.dhs.gov/science-and-technology/EDGE

Experiment design by Kahlil Dozier, Columbia University

- Human test subjects perform tasks in EDGE
- Two-way communication with a dispatcher via MCV testbed
- Variables: MtE delay, PTT delay, channel access time

Charles Jennings during a practice experiment

Ongoing and Future Work

Human Subject Experiments

- Ongoing experiments with volunteers at Columbia University
- Involve trained first responders in interactive lab experiments
- QoE: measure communication time, accuracy, impact on other tasks

<u>Modeling</u>

 Produce mappings from input parameters (delay, noise, loss) to output parameters (communication time and accuracy)

References

- 1. David J. Atkinson and Andrew A. Catellier, Intelligibility of Analog FM and Updated P25 Radio Systems in the Presence of Fireground Noise: Test Plan and Results, NTIA Report 13-495, May 2013.
- 2. Jesse Frey, Jaden Pieper and Tim Thompson, Mission Critical Voice QoE Mouthto-Ear Latency Measurement Methods, NIST, Feb 2018.
- 3. Wenyu Jiang, K. Koguchi and H. Schulzrinne, "QoS evaluation of VoIP endpoints", IEEE International Conference on Communications, 2003

