CS1004: Intro to CS in
Java, Spring 2005

Lecture #27: Computation theory, Al,
The End...

Janak] Parekh
janak@cs.columbia.edu

Administrivia
m Forgot to return EC on Tuesday, I'll return
today

m Solutions for 4, 5 up by tomorrow

m Review session scheduling, take II

m I’ll email everyone the date as soon as I have it

Computation theory

m How do we determine, theoretically, if a problem
has an algorithmic solution?
m Develop a theoretical model of a computing agent that
enables us to prove one way or another
m Must capture the fundamental properties of a
computing agent
m Must enable the exploration of the capabilities and
limitations of computation in the most general sense

Properties of a Computing Agent

m A computing agent must be able to:
m Accept input
m Store information and retrieve it from memory
m Take actions according to algorithm instructions
m Choice of action depends on the present state of the computing
agent and input item
m Produce output
m Alan Turing invented the Turing machine in 1936, well

before electronic computers
m Considered the father of Computer Science; also largely
responsible for cracking Enigma in WWII
m Don’t confuse a computing agent with computer architecture

The Turing Machine

m A Turing machine includes
m A (conceptual) tape that extends infinitely in both
directions
m Holds the input to the Turing machine
m Serves as memory
m The tape is divided into ce/ls, which each contain one
symbol from an ajphaber
m A unit that reads one cell of the tape at a time and
writes a symbol in that cell

The Turing Machine (continued)

m Alphabet for a given Turing machine
m Contains a special symbol b (for “blank”)
m Usually contains the symbols 0 and 1
m Sometimes contains additional symbols
m Input: A finite string of nonblank symbols from
the alphabet
m Output: Written on tape using the alphabet

m At any time, the unit is in one of k szates

HEDDONNDDER

t

1 {current state of the machine)

S/G Figure 11.2

A Turing Machine Configuration

The Turing Machine (continued)

m Each operation involves:
m Write a symbol in the cell (replacing the symbol already there)
m Go into a new state (could be same state)
m Move one cell left or right
m Each instruction says something like:
if (you are in state i) and (you are reading symbol j) then
write symbol k onto the tape
go into state s

move in direction d

The Turing Machine (continued)

m A shorthand notation for instructions

m Five components
m Current state
m Current symbol
m Next symbol
m Next state
m Direction of move
m Form

(current state, current symbol, next symbol, next state,
direction of move)

The Turing Machine (continued)

m A clock governs the action of the machine
m Conventions regarding the initial configuration
when the clock begins
m The start-up state will always be state 1
m The machine will always be reading the leftmost
nonblank cell on the tape
m The Turing machine has the required features
for a computing agent

A Model of an Algorithm

m Instructions for a Turing machine are a model
of an algorithm
m Are a well-ordered collection
m Consist of unambiguous and effectively computable
()pemnons
m Halt in a finite amount of time

m Produce a result

A Bit Inverter

m A bit inverter Turing machine
m Begins in state 1 on the leftmost nonblank cell
m Inverts whatever the current symbol is by printing its
opposite
m Moves right while remaining in state 1
m Program for a bit inverter machine
(1,0,1,1,R)
(1,1,0,L,R)

A Unary Addition Machine

m A Turing machine can be written to add two numbers,
using unary representation
m Uses only one symbol: 1
m Any unsigned whole number n is encoded by a sequence of
n+11s
m Trick: “concatenate” the two numbers — need just to erase
two ‘17 digits and fill in the blanks between the two
numbers

m The Turing machine program
(1,1,b,2,R) State 1 deals with removing the first 1
(2,1,b,3,R) State 2 deals with removing the second 1
(3,1,1,3,R) State 3 deals with filling in the blank
(3,b,1,4,R)

The Church—Turing Thesis

m Key insight as to Turing machines
m If there exists an algorithm to do a symbol manipulation task,
then there exists a Turing machine to do that task
m Two parts to writing a Turing machine for a symbol
manipulation task
m Encoding symbolic information as strings of Os and 1s
m Writing the Turing machine instructions to produce the
encoded form of the output
m Based on the Church—Turing thesis
m The Turing machine can be accepted as an ultimate model of
a computing agent
m A Turing machine program can be accepted as an ultimate
model of an algorithm

Turing machine

Bit string on tape when Bit string on tape when
Turing machine starts Turing machine halts
Encoding ‘ Decoding
Symbolic input ‘— Symbolic output
Algorithm

S/G Figure 11.9
Emulating an Algorithm by a Turing Machine

The Church-Turing Thesis
(continued)
m Turing machines define the limits of
computability

= An uncomputable or unsolvable problem

m A problem for which we can prove that no Turing
machine exists to solve it

Unsolvable Problems

m The halting problem
m Decide, given any collection of Turing machine instructions
together with any initial tape contents, whether that Turing
machine will ever halt if started on that tape
m If we could find such a program, we’d be able to actively
avoid infinite loops and related crashes
m Traditionally, one uses a proof by contradiction
m Assume that a Turing machine exists that solves this problem

m Show that this assumption leads to an impossible situation

The halting problem, part I

m Let there exist a Turing machine P that can take, as
input, a program T (composed of Turing machine
instructions)

m We want to know if T halts or not given some input t.

m Ideally, P will write a 1 on the tape if it halts, and a 0 if it
doesn’t

m Now, write a Turing machine Q that runs P, and then:

® Doesn’t halt if P writes a 1 (how do we do this?);
m Does halt if P writes a 0

Key insight to the halting problem

m Finally, make a copy of Q (called Q°) and use it
as input to Q itself
m If P finds that QO halts, then Q won’t halt
m If P finds that Q” doesn’t halt, then Q will halt
m But... O’ is equivalent to Q, so if P claims ()’
halts — and QQ doesn’t — it’s wrong
m This is a contradiction

m Yes, we “backed ourselves™ into it, but believe it or
not, the formal proof is airtight

Yikes!

m OK, so the proof is kind of mind-bending and
warped
m Sadly, the book is a little zore sophisticated about it
m Here’s the compromise: just accept that the
halting problem is unsolvable and understand its
consequences, I won’t ask you about the proof

m When you do get it, though, it’s pretty neat

Consequences of the halting
problem

= No program can be written to decide whether
any given program always stops eventually, no
matter what the input

= No program can be written to decide whether
any two programs are equivalent (will produce
the same output for all inputs)

m No program can be written to decide whether
any given program run on any given input will
ever produce some specific output

Al

m Artificial Intelligence
explores techniques for
incorporating aspects of
intelligence into A]
computer systems —J \

| Human

m Simplest example of Al: Interrogotor \
the Turing test
m A test for intelligent
behavior of machines

Machine

m Emacs has M-x doctor

Classifying human tasks

m Computational tasks
m Tasks for which algorithmic solutions exist by definition
m We already know computers are better than humans
m Recognition tasks
m Sensory/recognition/motor-skills tasks
m Humans are better than computers
m Reasoning tasks
m Require a large amount of knowledge
m Humans are far better than computers

m Al seeks to bridge the gap by using algorithms

Knowledge Representation

m In order to apply algorithms, we must first store &nowledge (a
body of facts or truths) and represent it
m For a computer to make use of knowledge, it must be
stored within the computer in some form
m Natural language: use natural-language processing (NLP)
m Formal language: use formal logic; most common
m Pictorial: use vision technologies
m Graphical: use graph algotithms
m Goal: be adequate, efficient, extendable, and
appropriate

Formal language

m From page 633
m Such encodings make it easier to process information

m Use of if-then like logic constructs

Spotis a dog dog(S)

Spot is brown. brown(S)

Every dog has 4 legs. | (Vx)(dog(x) = four-legged(x))

Recognition Tasks

m A neuron is a cell in the human brain, capable of:
m Receiving stimuli from other neurons through its dendrites

m Sending stimuli to other neurons through its axon

Dendrites —=%

Cell bady N

Muchous — =

Axon

Dendrites of
other neurans

Recognition Tasks (continued)

m If the sum of activating and inhibiting stimuli received
by a neuron equals or exceeds its “threshold” value, the
neuron sends out its own signal

m Each neuron can be thought of as an extremely simple
computational device with a single on/off output

m Compare the human brain to a computer

m Human brain: large number of simple “processors” with
multiple interconnections

m Computer: A small number (maybe only one) of very
powerful processors with a limited number of
interconnections between them

Recognition Tasks (continued)

= Artificial neural networks (neural networks)
m Simulate individual neurons
m Connect them in a massively parallel network of simple
devices that act somewhat like biological neurons
u Neural network
m Fach neuron has a threshold value
m Incoming lines carry weights that represent stimuli
m The neuron fires when the sum of the incoming weights
equals or exceeds its threshold value
m Like hardware logic operators, but allows for “shades

of grey”

S/G Figure 14.5
One Neuron with Three Inputs

Recognition Tasks (continued)

m Both the knowledge representation and
“programming’ are stored as weights of the
connections and thresholds of the neurons

m The network can learn from experience by
modifying the weights on its connections

m The algorithm tweaks the weights so that for a given
input (say, picture or voice), we get the correct
output

m Surprisingly useful for image and voice recognition

10

Reasoning Tasks

m Human reasoning requires the ability to draw on a large
body of facts and past experience to come to a
conclusion

m Artificial intelligence specialists try to get computers to
emulate this characteristic, most commonly via searching
a state space

m State-space graph:

m After any one node has been searched, there are a huge
number of next choices to try

m There is often no complete algorithm to dictate the next
choice

m Finds a solution path through a state-space graph

Intelligent Searching (continued)

m Fach node represents a problem state

m Goal state: the state we are trying to reach

m Intelligent searching applies some heuristic (or
an educated guess) to:

m Hvaluate the differences between the present state
and the goal state

® Move to a new state that minimizes those
differences

m Example: games!

Search tree for 9-puzzle

. . . . 3
m This is just a partial 5
search tree

m Represents one initial

configuration 25 2
$ab %
m Goal: to traverse the tree /I
quickly enough and find
woE P o9
the correct state ria A
AN A
. AN AR
u Problem. tree can bC 123 \23 123 123123 12_413 413
” . 3 T45 145 485 AR5 456 453725 2 5
very “wide B67ES 76 JBTH 796 BG JES

11

Search tree for Tic-Tac-Toe

Again, partial search tree

m User might be the first
move, followed by a
computer move, etc.

m Goal: find a winning state

m Problem reduced to a

data structure and a set

of search algorithms

m Still many choices. ..

Expert Systems

m Alternative: reason based on rule-based systems
m Also called expert systems or knowledge-based systems

m Attempt to mimic the human ability to engage pertinent facts
and combine them in a logical way to reach some conclusion

m Must contain
® A knowledge base: set of facts about subject matter

m An inference engine: mechanism for selecting relevant facts and
for reasoning from them in a logical way

m Many rule-based systems also contain

m An explanation facility: allows user to see assertions and rules
used in arriving at a conclusion

Expert Systems (continued)

m A fact can be
m A simple assertion
m A rule: a statement of the form if . . . then ...
m Inference engines can proceed through
m Forward chaining: start with assertions and match if
clauses/rules, which form new assertions
m Backward chaining: given a conclusion, work
backwards towards the initial set of assertions

12

Conclusion

m Computing theory defines what’s a computer, what’s
not, and what we can compute

m Artificial intelligence defines how computers are
processing the information flows of the future

m Both boil down to the same thing: computers take
information and work with them

m You’ve learned the basics of how to do this; everything
else in CS just builds on the core algorithm skillset you
learned here

m Hang on... two more slides...

Final

m Structure: very similar to midterm, maybe about
50% longer — you shouldn’t need all three hours,
but you will have them

m The last two classes are technically fair game,
but I’ll “go light” on the material (i.e., factual)

m Feel free to post in “exam discussion” if you’re
unsure if a particular topic is covered

m Review sessions next week: they’ll be open-
ended, so bring questions!

Thank you!

® You guys have been a great audience
m | hope you found this class rewarding
m Believe it or not, you guys are real programmers now
m Good luck with the rest of your Computer
Science mini-careers!
m And with finals
m Don’t forget review sessions next week

m And fill out those evaluations

13

