CS1004: Intro to CS in Java, Spring 2005
Lecture #26: OS and networks
Janak J Parekh
janak@cs.columbia.edu

Administrivia
- HW4 returned today
- HW6 due next Monday
- Solutions for 4, 5 coming by end of this week
- Forgot to give a bonus yesterday, make sure I give one today
- I’ve received three requests for exam rescheduling; will deal with them individually this week

Black-Box Testing
- In black-box testing, test cases are developed without considering the internal logic
- They are based on the input and expected output
- Input can be organized into equivalence categories
- Two input values in the same equivalence category would produce similar results
- Therefore a good test suite will cover all equivalence categories and focus on the boundaries between categories
White-Box Testing

- White-box testing focuses on the internal structure of the code
- The goal is to ensure that every path through the code is tested
- Paths through the code are governed by any conditional or looping statements in a program
- A good testing effort will include both black-box and white-box tests

Segue

- We now know how to write code
- But how do we actually run it on a computer?
- A Von Neumann computer is a “naked machine”
- Hardware without any helpful user-oriented features
- Extremely difficult for a human to work with
- An interface between the user and the hardware is needed to make a Von Neumann computer usable
- The operating system

Goals of an operating system/
“system software”

- Hide details of the underlying hardware from the user
- Present information in a way that does not require in-depth knowledge of the internal structure of the system
- Allow easy user access to the available resources
- Prevent accidental or intentional damage to hardware, programs, and data
The “Virtual Machine”

- System software
 - Acts as an intermediary between users and hardware
 - Creates a virtual environment for the user that hides the actual computer architecture
 - Virtual machine (or virtual environment)
 - Set of services and resources created by the system software and seen by the user

Types of System Software

- System software is actually a collection of many different programs
- Operating system
 - Controls the overall operation of the computer
 - Communicates with the user
 - Determines what the user wants
 - Activates system programs, applications packages, or user programs to carry out user requests
Types of System Software, cont’d.

- User interface
- Language services
 - Assemblers, compilers, and interpreters
 - Allow you to write programs in a high-level, user-oriented language, and then execute them
- Memory managers: allocate and retrieve memory space
- Information managers: handle the organization, storage, and retrieval of information on mass storage devices

System software, cont’d.

- I/O systems: allow the use of different types of input and output devices
- Scheduler: keeps a list of programs ready to run and selects the one that will execute next
- Utilities: collections of library routines that provide services either to user or other system routines

Given these, how do we run (machine) code on the machine?

Assembly Language

- Machine language poses a problem
 - Clumsy and difficult to change things like memory addresses
 - Makes it difficult to run a program twice, or run multiple programs
- Therefore, we use an assembly language
 - Designed to overcome shortcomings of machine languages
 - Create a more productive, user-oriented environment
 - Still a low-level programming language, similar to machine language
Assembly Language (continued)

- Main differences between assembly and machine language
 - Use of symbolic operation codes rather than numeric (binary) ones
 - Use of symbolic memory addresses rather than numeric (binary) ones
 - Pseudo-operations that provide useful user-oriented services such as data generation
- Various examples in the book; don’t worry about them

Translation and Loading

- Before a source program can be run, an assembler and a loader must be invoked
- Assembler: translates a symbolic assembly language program into machine language
- Loader: reads instructions from the object file and stores them into memory for execution
- Once the program is in memory, the operating system can schedule individual commands for execution

Functions of an Operating System

- Five most important responsibilities of the operating system
 - Program scheduling and activation
 - Control of access to system and files
 - Efficient resource allocation
 - Deadlock detection and error detection
 - User interface management
- The kernel handles the first four; the shell handles the fifth
The Linux kernel

- Popular learning kernel, since it’s open source
- You can grab your own copy from www.kernel.org, if you want to take a look
- A Linux operating system distribution (like Red Hat) consists of the Linux kernel and a bunch of tools (including GNU tools)
- Here’s a somewhat dated image of the directory structure of Linux source

System Security And Protection

- The operating system must prevent
 - Non-authorized people from using the computer
 - User names and passwords
 - Legitimate users from accessing data or programs they are not authorized to access
 - Authorization lists
Efficient Allocation Of Resources

- The operating system ensures that
 - Multiple tasks of the computer may be underway at one time
 - Processor is constantly busy
 - Keeps a “queue” of programs that are ready to run
 - Whenever processor is idle, picks a job from the queue and assigns it to the processor
 - Modern OSes *timeslice* multiple processes so that no one process waits forever; gives perception of simultaneous execution

Multitasking

The Safe Use Of Resources

- Deadlock
 - Two processes are each holding a resource the other needs
 - Neither process will ever progress
 - The operating system must handle deadlocks
 - Deadlock prevention
 - Deadlock recovery
The User Interface

- Operating system
 - Waits for a user command
 - If command is legal, activates and schedules the appropriate software package
- User interfaces
 - Text-oriented: command-line
 - Graphical

The next step

- Scale up from one machine to a multitude of machines, or a computer network
- Computer network
 - Set of independent computer systems connected by telecommunication links
 - Just about any kind of binary information can be exchanged – instead of writing it to disk, you send it over the wire
 - Nodes, hosts, or end systems – individual computers on a network
Communication Links

- **PAN** – Personal Area Network
 - IR, Bluetooth (10kbps-1mbps)
- **LAN** – Local Area Network
 - Ethernet (10-1000mbps)
 - WiFi (10-100mbps)
- **WAN** – Wide Area Network
 - Switched, dial-up telephone line (via modem; 56kbps)
 - Broadband (digital encoding, always-on)
 - Consumer DSL, cable (256kbps-10mbps)
 - Enterprise: T1 (1.544mbps), T3 (45mbps), OC3 (155mbps), OC12 (622mbps)
 - Columbia has a 300mbps Internet and 200mbps Internet2 connection
 - Wireless (cellular/radio, microwave) – 9.6kbps to ~ 100mbps

Transmission Time of an Image at Different Transmission Speeds

Line Type	Speed	Time to Transfer 8 Million Bits
Dial-up phone line	56 Kbps	2.4 minutes
DSL line, cable modem	2 Mbps	4 seconds
Ethernet	10 Mbps	0.8 second
Fast Ethernet	100 Mbps	0.08 second
Gigabit Ethernet	1 Gbps	0.008 second

S/G Figure 7.3

Transmission Time of an Image at Different Transmission Speeds

Overall Structure of the Internet

- All real-world networks, including the Internet, are a mix of LANs and WANs
- LAN commonly deployed within a company
 - One or more LANs connecting its local computers
 - Individual LANs interconnected into a wide-area “company network”
- Internet Service Provider (ISP) enables WAN communication
 - Provides a pathway from a specific network to other networks, or from an individual to other networks
- ISPs are hierarchical
 - Interconnect to each other in multiple layers to provide greater geographical coverage
S/G Figure 7.8(a): Structure of a Typical Company Network

S/G Figure 7.8(b): Structure of a Network Using an ISP

S/G Figure 7.8(c): Hierarchy of Internet Service Providers
Communication Protocols

- Protocol: A mutually agreed upon set of rules, conventions, and agreements for the efficient and orderly exchange of information
- IP: “Internet protocol”
 - Governs the operation of the Internet (and LANs)
 - Five “layers” (some people view it as 7)

<table>
<thead>
<tr>
<th>Layer</th>
<th>Protocol</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>Application</td>
</tr>
<tr>
<td>4</td>
<td>Transport</td>
</tr>
<tr>
<td>3</td>
<td>Network</td>
</tr>
<tr>
<td>2b</td>
<td>Logical Link Control</td>
</tr>
<tr>
<td>2a</td>
<td>Media Access Control</td>
</tr>
<tr>
<td>1</td>
<td>Physical</td>
</tr>
</tbody>
</table>

- RFCs: Protocols are all documented as part of the Internet Engineering Task Force (IETF)
 - http://www.ietf.org
 - RFC == “Request For Comment”
 - All of the basic protocols, like TCP, IP, etc. are all documented
 - Many of them were invented by Jon Postel in 1981

The layers

- Physical: actually move the bits around
- Medium/logical link: define a physical (or dial-up) connection between computers
- Network: define how computers are named and reached across lots of medium/logical links
- Transport: how do we reliably exchange information across the network?
- Application: how do we tell the network what info we want to take or give?
Network addressing

- IPv4 specifies the idea of a 32-bit address for a node
- Theoretical maximum of 2^{32} computers, practical a lot less (IPv6 increases to 2^{128})
- “Dotted quad” notation (e.g., 128.59.16.20)
- Subnet mask used to determine if the other computer is local or not, using bitwise AND
- DNS, or Domain Name Service, maps a hostname to an IP address

Common Application Protocols

- Needed to implement the end-user services provided by a network
- There are many application protocols, including:
 - HTTP (Hypertext Transfer Protocol)
 - SMTP (Simple Mail Transfer Protocol)
 - POP3 (Post Office Protocol v3)
 - IMAP (Internet Mail Access Protocol)
 - FTP (File Transport Protocol)
 - SSH (Secure SHell)
- All of these use a TCP port to offer service
Application-Layer Addressing

- Either just a hostname or a URL (Uniform Resource Locator)
 - The latter lets you specify both the hostname and an item (e.g., webpage) on that host
 - Form protocol://host address/page
 - The most common Web page format is hypertext information, accessed using the HTTP protocol
 - Most browsers also support FTP URLs, however

A Brief History of the Internet

- August 1962: first proposal for building a global computer network (J. C. R. Licklider of MIT)
- ARPANET built by the Advanced Research Projects Agency (ARPA) in the 1960s
 - Grew quickly during the early 1970s
- NSFNet: A national network built by the National Science Foundation (NSF)
- October 24, 1995: Formal acceptance of the term “Internet”
- Internet service providers start offering Internet access once provided by the ARPANET and NSFNet

History of the WWW

- Development completed in May 1991
- Designed and built by Tim Berners-Lee
- Hypertext: a collection of documents interconnected by pointers called links
- HTML: common format for creating hypertext documents
 - Don’t confuse HTTP and HTML!
Internet Security

- Encompasses various problems
- How do we encrypt traffic so people in the middle can’t read it?
- How do we design software so that it doesn’t crash (denial-of-service) or get hacked (vulnerabilities)?
- Turns out these are very hard problems to solve
- The tcpdump program is insightful…

Next time

- Computing theory
 - What’s a computer?
- Artificial intelligence
 - Is it the future?
- Wrapup