CS1004: Intro to CS in
Java, Spring 2005
Lecture #25: Finishing Up Java

Janak J Parekh
janak@cs.columbia.edu

Administrivia

m HW#6 late day policy: we’ll allow ore late day

Today’s lecture

m Hssentially the last lecture on Java; we’ll touch
upon it again a few times, but next week we’ll
focus on a few last interesting theory topics

m Today’s lecture will be a smorgasboard of topics
from chapter 6 and 7

m Due to the lack of time, we’re removing GUI
programming as required reading for chapters 5
through 7

m Some other minor topics also removed; check
syllabus




ArrayList Efficiency

m The ArrayLi st class is implemented using an
underlying array

m The array is manipulated so that indexes remain continuous
as elements are added or removed

m The Si ze() method returns the number of actual
objects in the ArrayList, and the code prevents you from
accessing empty cells

m If elements are added to and removed from the end of
the list, this processing is fairly efficient

m If elements are inserted and removed from the front or
middle of the list, the remaining elements are shifted

The Iterator Interface

m Recall that an iterator is an object that provides a means
of processing a collection of objects one at a time

m An iterator is created formally by implementing the
I t erat or interface, which contains three methods:
hasNext, next, and remove

m By having a class implement the Iterator interface, you
can use the “compact” version of the for loop

m ArrayList implements Iterator, so you caz use the
compact for loop

Enumerated Types

m Earlier, we introduced enumerated types, which
define a new data type and list all possible values
of that type

m enums actually define a special class with those
values as constants

m You can set up special constructors and methods

m We could have used enums for Rock-Paper-

Scissors

® You can use enums for Suits — optional




Enumerated Types

m Every enumerated type contains a static method
called val ues that returns a list of all possible
values for that type

m The list returned from val ues is an iterator, so
af or loop can be used to process them easily

m A carefully designed enumerated type provides a
versatile and type-safe mechanism for managing
data

Parameter Passing

m Another important issue related to method
design involves parameter passing

m Parameters in a Java method are passed by value

m A ¢opy of the actual parameter (the value passed
in) is stored into the formal parameter (in the
method header)

m Therefore passing parameters is similar to an
assignment statement

m A quick example...

Passing Objects to Methods

m When an object is passed to a method, the actual
parameter and the formal parameter become
aliases of each other, because a copy of the
reference is made

m What a method does with a parameter may or
may not have a permanent effect (outside the
method)

m Note the difference between changing the
internal state of an object versus changing which
object a reference points to




Method Overloading

w Method overloading is the process of giving a single
method name multiple definitions

m If 2 method is overloaded, the method name is
not sufficient to determine which method is
being called

m The signature of each overloaded method must
be unique

m The signature includes the number, type, and
order of the parameters

Method Overloading

m The compiler determines which method is being
invoked by analyzing the parameters

float tryMe(int x){ .
return x + .375; Invocation
¥ result = tryMe(25, 4.32)

float tryMe(int x, float y){
return x*y;

}

Method Overloading

m The println method is overloaded:
println (String s)
println (int i)
println (double d)
and so on...
= The following lines invoke different versions of
the println method:

Systemout.println ("The total is:");
Systemout.println (total);




Overloading Methods

m The return type of the method is not part of the
signature

m That is, overloaded methods cannot differ only
by their return type

m Constructors can also be overloaded

m Overloaded constructors provide multiple ways
to initialize a new object

Testing

m Testing can mean many different things

= At minimum, run a completed program with
various inputs

m [t also includes any evaluation performed by
human or computer to assess quality

m Some evaluations should occur before coding
even begins

m The ecarlier we find an problem, the easier and
cheaper it is to fix

Testing

m The goal of testing is to find errors

m We can never really be sure that all errors have
been eliminated

m So when do we stop testing?
m Conceptual answer: Never
m Snide answer: When we run out of time

m Better answer: When we are willing to risk that an
undiscovered error still exists




Reviews

A review is a meeting in which several people examine a
design document or section of code
It is a common and effective form of human-based
testing
Presenting a design or code to others:

m makes us think more carefully about it

m provides an outside perspective
Reviews are sometimes called znspections or walkthroughs

Not for this class, though

Test Cases

A fest case is a set of input and user actions,
coupled with the expected results

Often test cases are organized formally into zest
suites which atre stored and reused as needed

For medium and large systems, testing must be a
carefully managed process

Many organizations have a separate Quality
Assurance (QA) department to lead testing
efforts

Defect and Regression Testing

Defect testing is the execution of test cases to uncover
errors

The act of fixing an error may introduce new errors
After fixing a set of errors we should perform regression
testing — running previous test suites to ensure new
errors haven't been introduced

It is not possible to create test cases for all possible
input and user actions

Therefore we should design tests to maximize their
ability to find problems




Black-Box Testing

w In black-box testing, test cases are developed
without considering the internal logic

m They are based on the input and expected
output

m Input can be organized into eguivalence categories

m Two input values in the same equivalence
category would produce similar results

m Therefore a good test suite will cover all
equivalence categories and focus on the
boundaries between categories

White-Box Testing

m [Vhite-box festing focuses on the internal structure
of the code

m The goal is to ensure that every path through the
code is tested

m Paths through the code are governed by any
conditional or looping statements in a program

m A good testing effort will include both black-
box and white-box tests

Next time

m Finish theory topics for the semester




