CS1004: Intro to CS in
Java, Spring 2005
Lecture #24: OO Design, cont’d.

Janak J Parekh
janak@cs.columbia.edu

Administrivia

4 classes left (including today)... yikes!

HW#5 due now
m We'll start putting up HW#4 and HW#5 solutions by the
end of the week
m HW#06 already out

= Not more implementation work, but more design and
thinking than HW#5

Final scheduling

m If you can’t make the time due to a scheduling conflict, find
me ASAP

Scoping, revisited

m Before I remotivate €hi'S again, let’s be clear on Java’s
scoping rules
w A code block is usnally delineated with { and }
m Includes a class definition, a method definition, an
if/else/do/for/while/switch clause
m If you don’t use { and } in if/clse/do/for/while, there is a implicit
code block, but it’s exactly one statement long; switch requires {,}
m Variables declared in a for clause exist only within the for statement
and corresponding code block
m Can also have an arbitrary code block inside a method
m In general, an entity is directly visible within a code block and

any nested code blocks, but not in other blocks outside of the
block




Scoping and variables

m There are three kinds of variables: static (class)
variables, instance variables, and local variables

m Variables exist as long as their code block does
m Instance/static variables

m A variable » can be declared exactly once at the class level

m You cannot have both a static variable and an instance variable
with the same name

m Instance variables garbage collected when the object is
garbage collected (and if there are no other references to it)

m Static vatiables are never garbage collected

Scoping and local variables

m Local variables
m Defined inside a method

m Can have the same name as a static/instance variable; shadows
(hides) that static/instance variable by default

m Cannot be redefined within the same or nested code block,
but can be redefined in another code block

m Formal parameters are in the appropriate method code block

m Garbage collected as soon as the method ends (and if there
are no other references to it)

The this Reference

m The this reference allows a line of code to refer to
the object that it’s in

m That is, the this reference, used inside a2 method, refers to
the object through which the method is being executed

m Only applicable in a “non-static context”

m Useful for two applications:
m Disambiguating local and instance variables of the same name
m Handing a reference to an object to another entity within the

object itself

m We'll see the second case later




Disambiguation with this

m The thi's reference can be used to distinguish
the instance variables of a class from
corresponding method parameters with the
same names

public Account (String name, long acctNumber,
double balance) {
this.name = name;
this.acctNumber = acctNumber;
this.balance = balance;

}

Interfaces

m A Java interface is a collection of abstract
methods and constants

® An abstract method is a method header without a
method body

m An abstract method can be declared using the
modifier abst r act , but because all methods
in an interface ate abstract, usually it is left off

m An interface is used to establish a set of
methods that a class will implement

Interfaces

interface is areserved word

l None of the methods in
an interface are given
public interface Doable a definition (body)

{
public void doThisQ);
public int doThat();
public void doThis2(float value, char ch);
public boolean doTheOther(int num);
’ /
A semicolon immediately
follows each method header




Why interfaces?

m Interfaces are commonly called a contract that a class
agrees to by implementing the interface

m You’d do this for one of several reasons:

® You want your buddy to implement part of the assignment,
and want to tell him what to name his methods, vatiables,
return types, etc. (Useful in design, but not for this class!)

m You want to write an algorithm/program that can easily work
with many different objects that all need to have some
common functionality

m For our Blackjack design yesterday, we might make a
Player interface with two implementations: a user player and a
computer player

Interfaces

®m An interface cannot be instantiated
m Methods in an interface have public visibility by
default
m A class formally implements an interface by:
m stating so in the class header
m providing implementations for each abstract method
in the interface
m [f a class asserts that it implements an interface,
it must define all methods in the interface

Interfaces

public class CanDo implements Doable

{
public void doThis ) ~

implements is a

// whatever reserved word

}

public void doThat O Each method listed
in Doable is

) // whatever given a definition

// etc.




Interfaces

m A class that implements an interface can implement
other methods as well

m In addition to (or instead of) abstract methods, an
interface can contain constants

m (Remember that constants are declared via
public static int orsomething similar)

m When a class implements an interface, it gains access to
all its constants

m A class can also implement multiple interfaces; separate
them with a comma

Interfaces

m The Java standard class library contains many
helpful interfaces
m The Conrpar abl e interface contains one
abstract method called conpar eTo, which is
used to compare two objects
m We discussed the conpar eTo method of the
St ri ng class; since it’s there, St r i Ng can
implement Conrpar abl e
m What's the use of implementing

Conpar abl e?

Easy way to sort an array in Java

m Thete’s a static method in the Ar r ays class (in
java.util) called SOr t
m It can sort primitives: ints, doubles, floats, etc.
m Por objects, it can sort them if they implement
Comparable
m In other words, it can sorz any object as long as it implements the
Comparable interface
m Fundamental idea: Java’s sort code doesn’t care what your
object is, as long as it knows it can compare two of them at a
time
m Let’s do a quick example, but note, you can’t use this
for HW5




The Iterator Interface

m Recall that an iterator is an object that provides a means
of processing a collection of objects one at a time

m An iterator is created formally by implementing the
I t er at or interface, which contains three methods:
hasNext, next, and remove

m By having a class implement the Iterator interface, you
can use the “compact” version of the for loop

m We'll discuss this further when we talk about ArrayLists
in a few weeks

Enumerated Types

m Earlier, we introduced enumerated types, which
define a new data type and list all possible values
of that type

m enums actually define a special class with those
values as constants

m You can set up special constructors and methods

m We could have used enums for Rock-Paper-

Scissors

Enumerated Types

m Every enumerated type contains a static method
called val ues that returns a list of all possible
values for that type

m The list returned from val ues is an iterator, so
af or loop can be used to process them easily

m A carefully designed enumerated type provides a
versatile and type-safe mechanism for managing
data




Method Design

m /L chapter 6 talks about algorithm
design/decomposition

m Mostly overlap with what we’ve gone over, but
there are some Java-specific aspects

m Pig Latin example: “read-only”

Method Decomposition

= A method should be relatively small, so that it can be
understood as a single entity

m A potentially large method should be decomposed into
several smaller methods as needed for clarity

m A public service method of an object may call one or more
ptivate support methods to help it accomplish its goal

m Support methods might call other support methods if
appropriate

Parameter Passing

m Another important issue related to method
design involves parameter passing

m Parameters in a Java method are passed by value

m A ¢opy of the actual parameter (the value passed
in) is stored into the formal parameter (in the
method header)

m Therefore passing parameters is similar to an
assignment statement

m A quick example...




Passing Objects to Methods

m When an object is passed to a method, the actual
parameter and the formal parameter become
aliases of each other, because a copy of the
reference is made

m What a method does with a parameter may or
may not have a permanent effect (outside the
method)

m Note the difference between changing the
internal state of an object versus changing which
object a reference points to

Method Overloading

w Method overloading is the process of giving a single
method name multiple definitions

m If 2 method is overloaded, the method name is
not sufficient to determine which method is
being called

m The sjgnature of each overloaded method must
be unique

m The signature includes the number, type, and
order of the parameters

Method Overloading

m The compiler determines which method is being
invoked by analyzing the parameters

float tryMe(int x){
return x + .375;
} result = tryMe(25, 4.32)

Invocation

float tryMe(int x, float y){
return x*y;
3




Method Overloading

m The println method is overloaded:
println (String s)
println (int i)
println (double d)
and so on...
m The following lines invoke different versions of
the println method:

Systemout.println ("The total is:");
Systemout.println (total);

Overloading Methods

m The return type of the method is not part of the
signature

m That is, ovetloaded methods cannot differ only
by their return type

m Constructors can a/so be overloaded

m Overloaded constructors provide multiple ways
to initialize a new object

The ArrayList Class

m Arrays not the only way to store data

m The ArrayLi st class is part of the j ava. ut i |
package

m Nifty feature: it’s auto-resizing

m Like an array, it can store a list of values and reference
each one using a numeric index

m However, you cannot use the bracket syntax with an
ArrayLi st:it’s an object

m Furthermore, an Ar r ayLi st object grows and
shrinks as needed, adjusting its capacity as necessary




The ArrayList Class

m Elements can be inserted or removed with a
single method invocation

m When an element is inserted, the other elements
"move aside" to make room

m Likewise, when an element is removed, the list
"collapses" to close the gap

m The indexes of the elements adjust accordingly

m By default, an Arr ayLi St stores references to
the Qbj ect class, which allows it to store any
kind of object, but is a pain to use

ArrayLists of one type

m We can define an Ar r ayLi St object to accept only a
particular type of object, like an Array
m The following declaration creates an Ar r ayLi st

object that only stores Fami | y objects
ArrayList<Family> reunion = new ArrayList<Family>(Q);

m Example of generics; general discussion out of the scope
of this class

m If you want to store i Nt s, create an Ar rayLi st of
| nt eger s; as we saw earlier, Java 1.5 is smart enough
to auto-convert the two

ArrayList Efficiency

m The ArrayLi st class is implemented using an
underlying array

m The array is manipulated so that indexes remain continuous
as elements are added or removed

m The Si ze() method returns the number of actual
objects in the ArrayList, and the code prevents you from
accessing empty cells

m If elements are added to and removed from the end of
the list, this processing is fairly efficient

m If elements are inserted and removed from the front or
middle of the list, the remaining elements are shifted

10



Next time

m Finish Javal

m Finish some theory topics

11



