CS1004: Intro to CS in
Java, Spring 2005
Lecture #23: OO Design, cont’d.

Janak J Parekh
janak@cs.columbia.edu

Administrivia

m HW#5 due Tuesday

m And if you’re cheating on (or letting others see your)
HW#5... don’t

m By the way, we do check for cheaters across sections!

OO design aspects in Java

m We'll look at various Java constructs to help
enforce OO paradigms, including:
m Static variables and methods, revisited
m How multiple classes can “relate” to each other
m Interfaces: “contracts” for classes
m Enumerated types, redux
m Method design




Integrated Development
Environments (IDEs)

m Quick detour — we’ve learned how to write Java code in
emacs/javac, but that’s not the only way
In fact, thete ate specialized tools for Windows/Macs
that you can also use that infegrate the various steps of
development (hence, IDE)
m Two most popular Java ones are:

m Eclipse (http://www.eclipse.org)

m NetBeans (http://www.netbeans.org)

m Suggestion: for Eclipse, use the latest beta version of 3.1
(3.1MG) for full Java 5 support

You need Java installed on your machine first
Let’s take a look

Pros and cons

m Pros
m Nice editor, automatically shows etrors
m Fasy to compile, run
m GUI editors, integrated documentation
m Integrated debugger
m Cons
m Project-based, which is useful, but requires additional setup

m Encourages you to design and use your own packages, which
isn’t required for this class

m Requires a fair amount of computing power
m A bazillion options and buttons; zery confusing at first

Eclipse or NetBeans?

m No straight answer
m | primarily use Eclipse because
m Emacs keybindings built-in
m [ like its look and feel
= Auto-compiles
m On the other hand, I use NetBeans for GUI editing
m Eclipse has an optional download, but not quite so robust
m You are #of required to use either

m If you want to try it out, be my guest, but leave some time for
it

m Post questions on the webboard, we’ll try to help




Static Class Members

m Recall that a static method is one that can be
invoked through its class name

m For example, the methods of the Math class are
static:

result = Math.sqrt(25);
m Variables can be static as well

m Determining if a method or variable should be
static is an important design decision

The static Modifier

m We declare static methods and variables using
the st at i ¢ modifier

m [t associates the method or variable with the

class rather than with an object of that class

Static methods are sometimes called c/ass methods

and static variables are sometimes called c/ass
variables

Let's carefully consider the implications of each

Static Variables

m Normally, each object has its own data space, but if a
variable is declared as static, only one copy of the
variable exists

private static float price;

m Memory space for a static variable is created when the
class is first referenced

m All objects instantiated from the class share its static
variables

m Changing the value of a static variable in one object
changes it for all others




Static Methods

m Example: #zlity methods are often static
class Helper {
public static int cube (int num) {
return num * num * num;

33

Because it’s static, we can execute Hel per. cube( ..) directly

The order of the modifiers can be interchanged, but by
convention visibility modifiers come first

No benefit to creating lots of Helper objects

On the other hand, we might create a Cube class, where “length”
is an instance variable — then, we can’t make
cal cul at eArea() static

Static Class Members

m Recall that the MR N method is static — it is
invoked by the Java interpreter without creating
an object

m Static methods cannot reference instance
variables because instance variables don't exist
until an object exists

m Common error: instance vatiables in the same class
as the main method

m However, a static method can reference static
variables or local variables

main can instantiate the “same”
class

m This may sound unintuitive, but if you want to access
member variables in a class from within its main
method:

w First, instantiate that class as a variable;
m Then, access the member through that vatiable declaration

m If you don’t like this, feel free to putmaiinina
different class

m What we’ve been doing all along

m Quick example...




When use static variables?

m Static methods and static variables often work
together

m Common paradigm: counter variable that keeps
track of the number of objects that was
instantiated

m L/L pages 294, 295

m There are indeed other ways to do this, too

m Have a “storage” class that keeps track
® When in doubt, avoid it

Class Relationships

m Classes in a software system can have various
types of relationships to each other

m Three of the most common relationships:
m Dependency: A uses B
m Aggregation: A has-a B
m Inheritance: A is-2 B

m Inheritance is largely beyond the scope of this
class; take a look at L/L chapter 8 for more info

Dependency

m A dependency exists when one class relies on
another in some way, usually by invoking the
methods of the other

m We've seen dependencies in many previous
examples

= We don't want numerous or complex
dependencies among classes, 7or complex classes
that don't depend on others

m A good design strikes the right balance




Aggregation

m An aggregate is an object that is made up of other objects

— “has-a relationship”
m A car has a chassis

m In software, an aggregate object contains references to
other objects as instance data

m The aggregate object is defined in part by the objects
that make it up

m This is a special kind of dependency — the aggregate
usually relies on the objects that compose it

Aggregation

m In the following example, a St udent object is
composed, in part, of Addr ess objects

m A student has an address (in fact each student
has two addresses)

m An aggregation association is shown in a UML
class diagram using an open diamond at the
aggregate end

m See L/L pages 304-307 for the code

Aggregation in UML

StudentBody -===> Student
- firstName : String
+ main (args : String[]) : void - lastName : String
- homeAddress : Address

- schoolAddress : Address

+ toString() : String

Address r
- streetAddress : String
- city : String

- state : String
- zipCode : long

+ toString() : String




The this Reference

m The thi's reference allows an object to tefer to itself
m That is, the thi's reference, used inside a method,
refers to the object through which the method is being
executed
m Suppose the this reference is used in a method called
tryMe, which is invoked as follows:
objl.tryMe(Q);
obj2._tryMe();
m In the first invocation, the this reference refers to objl;
in the second it refers to obj2

The this Reference

m The this reference can be used to distinguish
the instance variables of a class from
corresponding method parameters with the
same names

public Account (String name, long acctNumber,
double balance) {
this.name = name;
this.acctNumber = acctNumber;
this.balance = balance;

¥

Interfaces

m A Java interface is a collection of abstract
methods and constants

® An abstract method is a method header without a
method body

m An abstract method can be declared using the
modifier abst r act , but because all methods
in an interface are abstract, usually it is left off

m An interface is used to establish a set of
methods that a class will implement




Interfaces

interface is a reserved word

l None of the methods in
an interface are given
public interface Doable a definition (body)

{
public void doThis();
public int doThat();
public void doThis2(float value, char ch);
public boolean doTheOther(int num);
’ /
A semicolon immediately
follows each method header

Why interfaces?

m Interfaces are commonly called a contract that a class
agrees to by implementing the interface

m You’d do this for one of several reasons:

m You want your buddy to implement part of the assignment,
and want to tell him what to name his methods, vatiables,
return types, etc. (Useful in design, but not for this class!)

® You want to write an algorithm/program that can easily work
with many different objects that all need to have some
common functionality

m For our Blackjack design yesterday, we might make a
Player interface with two dmplementations: a user player and a
computer player

Interfaces

m An interface cannot be instantiated
m Methods in an interface have public visibility by
default
m A class formally implements an interface by:
m stating so in the class header
m providing implementations for each abstract method
in the interface

m If a class asserts that it implements an interface,
it must define all methods in the interface




Interfaces

public class CanDo implements Doable

{
public void doThis () ~

implements is a

// whatever reserved word

¥
public void doThat () Each method listed
in Doable is

// whatever given a definition

by

// etc.

Interfaces

m A class that implements an interface can implement
other methods as well

m In addition to (or instead of) abstract methods, an
interface can contain constants

m (Remember that constants are declared via
public static int orsomething similar)

m When a class implements an interface, it gains access to
all its constants

m A class can also implement multiple interfaces; separate
them with a comma

Interfaces

m The Java standard class library contains many
helpful interfaces
m The Conpar abl e interface contains one
abstract method called conpar eTo, which is
used to compare two objects
m We discussed the conpar e To method of the
St ri ng class; since it’s there, St ri ng can
implement Conrpar abl e

m What's the use of implementing

Conpar abl e?




Easy way to sort an array in Java

m There’s a static method in the Ar r ays class (in
java.util) called SOr t
m It can sort primitives: ints, doubles, floats, etc.
m For objects, it can sort them if they implement
Comparable
m In other words, it can sort any object as long as it implements the
Comparable interface
m Fundamental idea: Java’s sort code doesn’t care what your
object is, as long as it knows it can compare two of them at a
time
m Let’s do a quick example, but note, you can’t use this
for HW5

The Iterator Interface

m Recall that an iterator is an object that provides a means
of processing a collection of objects one at a time

m An iterator is created formally by implementing the
I t erat or interface, which contains three methods:
hasNext, next, and remove

m By having a class implement the Iterator interface, you
can use the “compact” version of the for loop

We'll discuss this further when we talk about ArrayLists
in a few weeks

Enumerated Types

m Harlier, we introduced enumerated types, which
define a new data type and list all possible values
of that type

m enums actually define a special class with those
values as constants

® You can set up special constructors and methods

m We could have used enums for Rock-Paper-

Scissors




Enumerated Types

m Every enumerated type contains a static method
called val ues that returns a list of all possible
values for that type

m The list returned from val ues is an iterator, so
af or loop can be used to process them easily

m A carefully designed enumerated type provides a
versatile and type-safe mechanism for managing
data

Next time

m Finish OO design

m Return to some theory topics

11



