CS1004: Intro to CS in
Java, Spring 2005
Lecture #22: Algorithms and OO

Janak J Parekh
janak@cs.columbia.edu

Administrivia

m HW#5 due next Monday
m Please tell me you've started. ..

m Written #1 is a bit of a brainteaser

Selection sort

1. Getvaluas for mand the m list items

2. Bet the marker for the unsorted section at the end of the list

3. While the sorted section of the list is not empty, do steps 4 through &

4. Salect the largest number in the unsorted section of the list

5 Exchange this number with the last number in the unsorted section of tha list
[Mave the marker for the unsorted section left one position

7. Stop

m Needs the “find largest” algorithm as a “sub-algorithm”
m Let’s quickly write out the Java code in our little List
program

m What’s the complexity of this sort?

L/L Chap 5.9-5.12

m Basically the same GUI concepts covered in
chapter 4, but with loops and conditionals

m “Read-only” — take a look through in your spare
time, understand the concepts

m We may have GUI programming on HW#6, but
there won’t be on the final

Next steps

m We finally have a good idea of algorithms and
ways to tell Java to structure data for them
= How do we choose the appropriate structure?
m Either have your instructor tell you to, or;
m Learn it yourself
m We'll start exploring design methodologies
today, but this is a lifelong learning process
m In general, designing software is a huge
challenge

Program Development

m The creation of software involves four basic
activities:
m cstablishing the requirements
m creating a design
m implementing the code
m testing the implementation

m These activities are not strictly linear — they
overlap and interact

m Documentation also very important

Requirements

Software requirements specify the tasks that a program
must accomplish

m what to do, not how to do it
Often an initial set of requirements is provided, but
they should be critiqued and expanded
It is difficult to establish detailed, unambiguous, and
complete requirements
Careful attention to the requirements can save
significant time and expense in the overall project
In general, we give you the requirements

Design

A software design specifies how a program will accomplish
its requirements

m How the solution can be broken down into manageable

preces

m What each piece will do

An object-oriented design determines which classes and
objects are needed, and specifies how they will interact
Low level design details include how individual
methods will accomplish their tasks
We’ve given you the design for the first 5 HWs; in
HW6, you'll get to design various aspects of your
program

Implementation

Implementation is the process of translating a
design into source code

Novice programmers often think that writing
code is the heart of software development, but
actually it should be the least creative step
Almost all important decisions are made during
requirements and design stages
Implementation should focus on coding details,
including style guidelines and documentation

Testing

m Testing attempts to ensure that the program will
solve the intended problem under all the
constraints specified in the requirements

m A program should be thoroughly tested with the
goal of finding errors

m Debugging is the process of determining the cause
of a problem and fixing it

Identifying Classes and Objects

m The core activity of object-oriented design is
determining the classes and objects that will
make up the solution

m The classes may be part of a class library, reused
from a previous project, or newly written

m One way to identify potential classes is to
identify the objects discussed in the
requirements

m Objects are generally nouns, and the services that an
object provides are generally verbs

Identifying Classes and Objects

m A partial requirements document:

The[user]must be allowed to specify each[product]by
its primary[characteristics, including its[name|and
[product numbet. If the[bar code]does not match the
[productthen an[error]should be generated to the
[message window]and entered into the rror log] The
[summary reportjof allltransactions/ must be structured

as specified in section 7.A.

Of course, not all nouns will correspond to
a class or object in the final solution

Identifying Classes and Obijects

m Remember that a class represents a group
(classification) of objects with the same
behaviors

m Generally, classes that represent objects should
be given names that are singular nouns

= Coi n, St udent , Message

m A class represents the concept of one such

object
m We are free to instantiate as many of each object as
needed

Identifying Classes and Objects

m Sometimes it is challenging to decide whether
something should be represented as a class
m Should an employee's address be represented as a set
of instance variables or as an Address object?
m The more you examine the problem and its
details the more clear these issues become

m When a class becomes too complex, it often
should be decomposed into multiple smaller
classes to distribute the responsibilities

Identifying Classes and Objects

m We want to define classes with the proper
amount of detail

m For example, it may be unnecessary to create
separate classes for each type of appliance in a
house

m It may be sufficient to define a more general
Appl i ance class with appropriate instance
data

m It all depends on the details of the problem
being solved

Identifying Classes and Obijects

m Part of identifying the classes we need is the
process of assigning responsibilities to each class

m Every activity that a program must accomplish
must be represented by one or more methods in
one or more classes

m We generally use verbs for the names of
methods

m In early stages it is not necessary to determine
every method of every class — begin with
primary responsibilities and evolve the design

Documenting OOD

m Some combination of
m Psuedocode
m Concise English descriptions
= UML
m Key: we should avoid writing code at this stage,
keep things higher-level

m Let’s do a quick example

OO design aspects in Java

m This week, we’ll look at various Java constructs
to help enforce OO paradigms, including:
m Static variables and methods, revisited
m How multiple classes can “relate” to each other
m Interfaces: “contracts” for classes
m Enumerated types, redux
m Method design

Static Class Members

m Recall that a static method is one that can be
invoked through its class name

m For example, the methods of the Math class are
static:

result = Math.sqrt(25)
m Variables can be static as well

m Determining if a method or variable should be
static is an important design decision

The static Modifier

m We declare static methods and variables using
the st at i ¢ modifier

m [t associates the method or variable with the

class rather than with an object of that class

Static methods are sometimes called c/ass methods

and static variables are sometimes called c/ass
variables

Let's carefully consider the implications of each

Static Variables

m Normally, each object has its own data space, but if a
variable is declared as static, only one copy of the
variable exists

private static float price;

m Memory space for a static variable is created when the
class is first referenced

m All objects instantiated from the class share its static
variables

m Changing the value of a static variable in one object
changes it for all others

Static Methods

m Example: #zlity methods are often static
class Helper {
public static int cube (int num) {
return num * num * num;
33

m Because it’s static, we can execute Hel per . cube(..) directly

m The order of the modifiers can be interchanged, but by
convention visibility modifiers come first

m No benefit to creating lots of Helper objects

m On the other hand, we might create a Cube class, where “length”
is an instance variable — then, we can’t make
cal cul at eArea() static

Static Class Members

m Recall that the MR N method is static — it is
invoked by the Java interpreter without creating
an object

m Static methods cannot reference instance
variables because instance variables don't exist
until an object exists

m Common error: instance vatiables in the same class
as the mai N method

m However, a static method can reference static
variables or local variables

When use static variables?

m Static methods and static variables often work
together

m Common paradigm: counter variable that keeps
track of the number of objects that was
instantiated

m L/L pages 294, 295

m There are indeed other ways to do this, too

m Have a “storage” class that keeps track
® When in doubt, avoid it

Class Relationships

m Classes in a software system can have various

types of relationships to each other

m Three of the most common relationships:

m Dependency: A uses B
m Aggregation: A has-a B
m Inheritance: A -2 B

m Inheritance is largely beyond the scope of this

class; take a look at L/L chapter 8 for more info

Dependency

A dependency exists when one class relies on
another in some way, usually by invoking the
methods of the other

We've seen dependencies in many previous
examples

We don't want numerous or complex
dependencies among classes, 7or complex classes
that don't depend on others

A good design strikes the right balance

Aggregation

An aggregate is an object that is made up of other objects
— “has-a relationship”

m A car has a chassis
In software, an aggregate object contains references to
other objects as instance data
The aggregate object is defined in part by the objects
that make it up
This is a special kind of dependency — the aggregate
usually relies on the objects that compose it

Aggregation

m In the following example, a St udent object is
composed, in part, of Addr ess objects

m A student has an address (in fact each student
has two addresses)

m See L/L pages 304-307

m An aggregation association is shown in a UML
class diagram using an open diamond at the
aggregate end

Aggregation in UML

StudentBody === Student
- firstName : String
+main (args : String[]) : void - lastName : String
- homeAddress : Address

- schoolAddress : Address

+ toString() : String

Address
- strestAddress : String Y
- city : String

- state : String
- zipCode : long

+ toString() : String

The this Reference

m The This reference allows an object to refer to itself

m That is, the ThiS reference, used inside a method,
refers to the object through which the method is being
executed

m Suppose the This reference is used in 2 method called
tryMe, which is invoked as follows:

objl.tryMe();
obj2._tryMe();

m In the first invocation, the this reference refers to objl;
in the second it refers to obj2

10

The this reference

m The thi's reference can be used to distinguish
the instance variables of a class from
corresponding method parameters with the
same names

public Account (String name, long acctNumber,
double balance) {
this.name = name;
this.acctNumber = acctNumber;
this.balance = balance;

}

Next time

m Continue OO

11

