CS1004: Intro to CS in
Java, Spring 2005
Lecture #20: Algorithms, cont’d.

Janak J Parekh
janak@cs.columbia.edu

Administrivia

m HW#4 due now

m Extra credits returned today

Board examples

m Finish Fibonacci numbers

m Array algorithms
m Search for a number (or an item in general) in a list
m Find the largest number in a list
= Sort numbers

m We'll do more in the homework and in the rest
of the semester

Algorithm correctness & efficiency

m Define desirable characteristics in an algorithm:
m Correctness
m Does the algorithm solve the problem it is designed
for?
m Does the algorithm solve the problem correctly?
m Fase of understanding
m How easy is it to understand or alter an algorithm?
m Important for program maintenance

Attributes of Algorithms
(continued)

m Elegance
m How clever or sophisticated is an algorithm?
m Sometimes elegance and ease of understanding work
at cross-purposes
m Efficiency
m How much time and/or space does an algorithm
require when executed?
m Perhaps the most important desirable attribute

Measuring Efficiency

m Analysis of algorithms
m Study of the efficiency of various algorithms
m Efficiency measured as function relating size of
input to time or space used
m For one input size, best case, worst case, and
average case behavior must be considered
m The ®/O notation captutres the order of magnitude
of the efficiency function
m O (“big-Theta”) vs. O (“big-Oh”) notation

Order of Magnitude: Order n

m As n grows large, order of magnitude dominates
running time, minimizing effect of coefficients and
lowet-order terms

m All functions that have a linear shape are considered
equivalent

m Order of magnitude n

m Written O(n)
m Functions vary as a constant times n

Sequential Search, analyzed

m Comparison of the NAME being searched for against a
name in the list
m Central #nit of work
m For lists with n entries:
m Best case
m NAME is the first name in the list, 1 comparison
= O(1)
m Worst case
u NAME is the last name in the list, or not in list
m n comparisons, or O(n)
m Average case
® Roughly n/2 comparisons, or O(n)

Sequential Search (continued)

m Space efficiency
m Uses essentially no more memory storage than
original input requires
m Very space-efficient
m But... is there a faster way to search through a
list?

Binary Search

m Given ordered data,
m Search for NAAME by comparing to middle element
m If not a match, restrict search to either lower or
upper half only
m Hach pass eliminates half the data
m Efficiency
m Best case
m 1 comparison: O(1)
m Worst case
m g n compatisons: O(lg n)
u What's lg n?

o
=
[
©W —
A —
w -
o —
N —
@ —

A Comparison of n and Ig n (S/G, pg. 109)

Sorting

m What if we want to sort the numbets in a list?

m There are number of algorithms; book describes
selection sort, but we’ll also go over bubble sort
very quickly.

m Let’s begin!

Next time

m Finish working with algorithms (for now)

m Begin OO design

