CS1004: Intro to CS in Java, Spring 2005

Lecture \#19: Algorithms, cont'd.
Janak J Parekh
janak@.cs.columbia.edu

Administrivia

- HW\#4 due on Tuesday

■ I'm behind on my email/homework fixes... I should be caught up by Tuesday

Board examples

- Palindrome checker (see book for code) \qquad
- Print out the first n Fibonacci numbers
- Search for a number (or an item in general) in \qquad a list
- Find the largest number in a list
- Sort numbers
- Other examples in the books
\qquad
\qquad
\qquad
\qquad
\qquad

Administrivia
- HW\#\#4 due on Tuesday
- I'm behind on my email/homework fixes... I
should be caught up by Tuesday

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Board examples	
-	Palindrome checker (see book for code)
-	Print out the first n Fibonacci numbers
-	Search for a number (or an item in general) in
a list	
-	Find the largest number in a list
-	Sort numbers

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Strategy

- General process:
- Identify the main classes/data involved
- Try to do one or two steps by hand
- Generalize and write out the algorithm
- Let's begin, on the board
- We'll then talk about how to characterize the resulting algorithms we get

Algorithm correctness \& efficiency

\qquad

- Define desirable characteristics in an algorithm: \qquad
- Correctness
- Does the algorithm solve the problem it is designed \qquad for?
- Does the algorithm solve the problem correctly?
- Ease of understanding
- How easy is it to understand or alter an algorithm?
- Important for program maintenance

Attributes of Algorithms (continued)

Elegance

- How clever or sophisticated is an algorithm?
- Sometimes elegance and ease of understanding work at cross-purposes
- Efficiency
- How much time and/or space does an algorithm require when executed?
- Perhaps the most important desirable attribute
\qquad

Attributes of Algorithms (continued)
- Elegance
- How clever or sophisticated is an algorithm?
- Sometimes elegance and ease of understanding work
at cross-purposes
- Efficiency
- How much time and/or space does an algorithm
require when executed?
- Perhaps the most important desirable attribute

Measuring Efficiency

- Analysis of algorithms
- Study of the efficiency of various algorithms
- Efficiency measured as function relating size of \qquad input to time or space used
- For one input size, best case, worst case, and average case behavior must be considered
- The Θ notation captures the order of magnitude of the efficiency function
- Θ ("big-Theta") vs. O ("big-Oh") notation

Order of Magnitude: Order n

\qquad

- As n grows large, order of magnitude dominates \qquad running time, minimizing effect of coefficients and lower-order terms \qquad
- All functions that have a linear shape are considered equivalent \qquad
- Order of magnitude n
- Written $\Theta(\mathrm{n})$
- Functions vary as a constant times n
\qquad
\qquad
\qquad

Sequential Search, analyzed

- Comparison of the NAME being searched for against a \qquad name in the list
- Central unit of work
- For lists with n entries:
\qquad
- Best case
- NAME is the first name in the list, 1 comparison \qquad
- Worst case
- NAME is the last name in the list, or not in list \qquad
- n comparisons, or $\Theta(\mathrm{n})$
- Average case
- Roughly $\mathrm{n} / 2$ comparisons, or $\Theta(\mathrm{n})$ \qquad
\qquad

Sequential Search (continued)

- Space efficiency
- Uses essentially no more memory storage than original input requires
\qquad
- Very space-efficient
- But... is there a faster way to search through a list?

Binary Search

\qquad

Given ordered data, \qquad

- Search for NAME by comparing to \qquad middle element
- If not a match, restrict search to either \qquad lower or upper half only
- Each pass eliminates half the data \qquad
- Efficiency
- Best case \qquad
- 1 comparison: Θ (1)

A Comparison of n and $\lg \mathrm{n}$ (S/G, pg. 109)

Sorting

- What if we want to sort the numbers in a list?
- There are number of algorithms; book describes selection sort, but we'll also go over bubble sort very quickly.
- Let's begin!
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Next time

