CS1004: Intro to CS in
Java, Spring 2005
Lecture #19: Algorithms, cont’d.

Janak J Parekh
janak@cs.columbia.edu

Administrivia

m HW#4 due on Tuesday

® I’'m behind on my email/homework fixes... I
should be caught up by Tuesday

Board examples

Palindrome checker (see book for code)

Print out the first #» Fibonacci numbers
Search for a number (or an item in general) in
a list

Find the largest number in a list

Sort numbers

Other examples in the books




Strategy

m General process:
m Identify the main classes/data involved
m Try to do one or two steps by hand
m Generalize and write out the algorithm
m Let’s begin, on the board
m We'll then talk about how to characterize the
resulting algorithms we get

Algorithm correctness & efficiency

m Define desirable characteristics in an algorithm:
m Correctness
m Does the algorithm solve the problem it is designed
for?
m Does the algorithm solve the problem correctly?
m Fase of understanding
m How easy is it to understand or alter an algorithm?
m Important for program maintenance

Attributes of Algorithms
(continued)

m Elegance
m How clever or sophisticated is an algorithm?
m Sometimes elegance and ease of understanding work
at cross-purposes
m Efficiency
m How much time and/or space does an algorithm
require when executed?
m Perhaps the most important desirable attribute




Measuring Efficiency

m Analysis of algorithms
m Study of the efficiency of various algorithms
m Efficiency measured as function relating size of
input to time or space used
m For one input size, best case, worst case, and
average case behavior must be considered
m The ® notation captures the order of magnitude of
the efficiency function
m O (“big-Theta”) vs. O (“big-Oh”) notation

Order of Magnitude: Order n

m As n grows large, order of magnitude dominates
running time, minimizing effect of coefficients and
lower-order terms

m All functions that have a linear shape are considered
equivalent

m Order of magnitude n

m Written ©(n)
m Functions vary as a constant times n

Sequential Search, analyzed

m Comparison of the N.AME being searched for against a
name in the list
m Central unit of work
m For lists with n entries:
m Best case
m NAME is the first name in the list, 1 comparison
= (1)
m Worst case
m NAME is the last name in the list, or not in list
= n comparisons, ot O(n)
m Average case
= Roughly n/2 comparisons, or O(n)




Sequential Search (continued)

m Space efficiency
m Uses essentially no more memory storage than
original input requires
m Very space-efficient
m But... is there a faster way to search through a
list?

Binary Search

m Given ordered data,
mSearch for NAME by comparing to
middle element
m If not a match, restrict search to either
lower or upper half only
m Each pass eliminates half the data
m Efficiency
m Best case
m] comparison: O(1)

7 —
& —
5 —

3 lg n

2?2 —
1 —

O T T T T T T
of1 2 3 4 5 6 7 8

A Compatison of nand Ig n (S/G, pg. 109)




Sorting

m What if we want to sort the numbets in a list?

m There are number of algorithms; book describes
selection sort, but we’ll also go over bubble sort
very quickly.

m Let’s begin!

Next time

m Continue working with algorithms




