CS1004: Intro to CS in
Java, Spring 2005
Lecture #17: Java conditionals/loops, cont’d.

Janak] Parekh
janak@cs.columbia.edu

Administrivia

m HW#3 returned today
m Let’s look at HW#4 briefly
m Command-line arguments
m If you submit written electronically, nanze your file
correctly!
m A few students didn’t for HW#3; if your grade is
incomplete, come see me
m Reminder: don’t cheat; we just caught a few
people yesterday

While example, redux

m Maintain a running sum
w A sentinel value is a special input value that
represents the end of input
w Jnput validation
m “While the user types an invalid value, reject and
wait for a valid value.”
m Example: calculate mean of exams
m Similar to if statements, while statements can be
nested as well

Infinite Loops

® The body of a Whi | € loop eventually must
make the condition false

m If not, it is called an énfinite loop, which will
execute until the user interrupts the program

m This is a common logical error

® You should always double check the logic of a
program to ensure that your loops will terminate
normally

Infinite Loops
m An example of an infinite loop:

int count = 1;

while(count <= 25) {
System.out.printin(count);
count = count - 1;

}

m This loop will continue executing until
interrupted or until an underflow error occurs

Nested Loops

m How many times will the string " Her e" be
printed?

countl = 1;
while(countl <= 10) {
count2 = 1;
while(count2 <= 20) {
System.out.printin(‘Here");
count2++;
}

countl++;

break, version 2

m We saw br eak in the context of SWi t ch, but it can
be used with Whi | € (and other loops) as well; for
example,

while(true) {
if(i > 10) break;
else i++;

}

m What is this code equivalent to?

m Generally, you don’t use break, but it’s useful to have,
especially if the while loop is very complex

m If you have nested loops, break only breaks out of the
most immediate loop, not all of them

m return can be used to break out of a bunch of loops, but avoid

The do Statement

w A do statement has the following syntax:

do {
statement;
} while(condition);

m The St at enment is executed once initially, and
then the condi ti on is evaluated

m The statement is executed repeatedly until the
condition becomes false

The do Statement

® An example of a d0 loop:

int count = 0;
do {
count++;
System.out.printin(count);
} while (count < 5);

m The body of 2 0O loop executes at least once
m What’s the result of this code fragment?
m dp is particularly useful for “interactive repetition”

Comparing while and do

The while Loop The do Loop

condition
evaluated

false

condition

evaluated true

false

The for Statement

w A for statement has the following syntax:

The initialization The statement is
is executed once executed until the
before the loop begins condition becomes false

for (initialization ; condition ; increment)
statement;

The increment portion is executed at
the end of each iteration

Logic of a for loop

condition
evaluated
true

false

The for Statement

m Afor loop is functionally equivalent to the
following Whi | e loop structure:

initialization;

while(condition) {
statement;
increment;

b

The for Statement

® An example of a f Or loop:

for (int count=1; count < 5; count++)
System.out.println (count);

m The initialization section can be used to declare
a variable

m Like 2 Whi | e loop, the condition of a f Or
loop is tested prior to executing the loop body

m Therefore, the body of a f Or loop will execute
Zero or more times

The for Statement

m The increment section can perform any
calculation

for (int num=100; num > O; num -= 5)
System.out.printin(num);

m Afor loop is well suited for executing
statements a specific number of times that can
be calculated or determined in advance

The for Statement

m Each expression in the header of a f Or loop is

optional

If the initialization is left out, no initialization is
performed

If the condition is left out, it is always
considered to be true, and therefore creates an
infinite loop

If the increment is left out, no increment
operation is performed

In-class extra credit

Here’s how it works:
m I’ll outline the problem on the board in class
m At the beginning of next class, hand in a printout containing:
m Your name
m The code
m Exccution of the code
m A few sentences explaining what you found out
No electronic submission for this
This will 7oz affect the grade of those that don’t do it

Goal is for people to get opportunities to practice
concepts more frequently than homeworks

Iterators

An iterator is an object that allows you to process a
collection of items one at a time
Step through each item in turn and process it as needed
m The hasNext method that returns true if there is at least
one more item to pfOCCSS
m The next method returns the next item
Several classes in Java, including Scanner , are
iterators
m The hasNext method returns true if there is more data to
be scanned
m The next method returns the next scanned token as a string

Iterators

m The Scanner class also has variations on the
hasNext method for specific data types (such as
hasNext | nt)

m The fact that a Scanner is an iterator is particularly
helpful when reading input from a file

m What if we wanted to change our averaging program to read
from a file containing the numbers?

m Need to handle IOException; we do so by “throwing” for
now

m Use command-line arguments to specify the file to read

So, what can we do?

m Book examples
m Palindrome tester
m URL dissector (huh?)
m Number reverser
m Multiplicative table
m Stars (used for HW)
m We need to start thinking on how we can
formulate these problems
m Describe the algorithm in greater detail

Representing algorithms

m Code (of course)
m Natural language (steps, etc.)
m Psuedocode
m English language constructs modeled to look like
statements available in most programming languages
m Steps presented in a structured manner (numbered,
indented, etc.)
m No fixed syntax for most operations is required, but
more readable than natural language
m Emphasis is on process, not notation
m Can be easily translated into a programming language

How do we come up with
algorithms?

m An imprecise science at best: problem-solving
m Understand the problem

m Get an idea of how/which algorithm might solve the
problem

m Formulate the algorithm and represent as a program

m Hvaluate the program for accuracy and potential to
solve other problems

m This is not much help, is it?

“Get a foot in the doot”

m Tty doing the first (few) step(s) by hand
m Look at what you had to do to accomplish it

m Sce if you can reapply this to continue solving the
problem

m Reapply another solution
m Stepwise refinement
m Look at the problem from a very high level

m Break it down repeatedly into smaller pieces, until
we get a set of algorithmic steps

Board examples

. Palindrome checker (see book for code)
2. Print out the first » Fibonacci numbers
3. Search for a number in a list

4. Reverse a list (array) of numbers

Next time

m Continue working with algorithms

