CS1004: Intro to CS in
Java, Spring 2005
Lecture #16: Java conditionals/loops, cont’d.

Janak] Parekh
janak@cs.columbia.edu

Administrivia

m Midterms returned now

m Weird distribution Histogram
m Mean: 35.4 + 8.4 2

m What does this mean?
m In-class extra credit

m HW#3 returned Thurs.

Frequency

o o 5
i}

i}

]

/=
 —
 —]
/
——
I—

m HW#4 out P g o gt
EF LT L LS

The Conditional Operator, redux

m (Another) Example:

System.out.println ("Your change is " + count +
((count == 1) ? "Dime"™ : "Dimes™));

m If count equals 1, then " Di me" is printed
m [f count is anything other than 1, then
"Di mes" is printed

The switch Statement

m The switch statement provides another way to
decide which statement to execute next

m The switch statement evaluates an expression,
then attempts to match the result to one of
several possible cases

m Each case contains a value and a list of
statements

m The flow of control transfers to statement
associated with the first case value that matches

The switch Statement (IT)

m The general syntax of a SWi t Ch statement is:

switch switch (expression)
and {
caseA case valuel :
are statement-listl
reserved case value2 :
words statement-list2 4—|
case value3 :
statement-list3 If expression
case ... matches value2,
control jumps
} to here

switch and break

m Often a break statement is used as the last
statement in each case's statement list
m A break statement causes control to transfer to the
end of the switch statement
m [f 2 break statement is not used, the flow of
control will continne into the next case
m Biggest common bug with switch, and a reason
why I use it sparingly

switch Example

m An example of a switch statement:

switch (option) {

case "A":
aCount++;
break;

case "B":
bCount++;
break;

case "C":
cCount++;
break;

switch and default case

m A SW t ch statement can have an optional
default case

m The default case has no associated value and
simply uses the reserved word def aul t

m If the default case is present, control will
transfer to it if no other case value matches

m If there is no default case, and no other value
matches, control falls through to the statement
after the switch

What can you switch on?

m The expression of 2 SWi t Ch statement must
result in an zntegral type, meaning an integer
(byte,short,int,l ong) orachar

m It cannot be a2 bool ean value or a floating
point value (f | oat or doubl e)

m The implicit boolean condition in a SWi t ch
statement is equality (==, not .equals())

m Common for things like menu systems (“Enter
one of the above 5 options”)

Comparing Data

m When comparing data using boolean
expressions, it's important to understand the
nuances of certain data types

m We’ve talked about these, but now let’s
formalize it

Comparing Float Values

® You should rarely use the equality operator (==
when comparing two floating point values
(f1 oat ordoubl e)

m Two floating point values are equal only if their
underlying binary representations match exactly

m Computations often result in slight differences
that may be irrelevant

m In many situations, you might consider two
floating point numbers to be "close enough"
even if they aren't exactly equal

Comparing Float Values (II)

m To determine the equality of two floats, you may
want to use the following technique:
if (Math.abs(fl - f2) < TOLERANCE)
System.out.println (“Essentially equal™);

m If the difference between the two floating
point values is less than the tolerance, they are
considered to be equal

m The tolerance could be set to any appropriate
level, such as 0.000001

Comparing Characters

m As we've discussed, Java character data is based
on the Unicode character set

m Unicode establishes a particular numeric value
for each character, and therefore an ordering

m We can use relational operators on character
data based on this ordering

m For example, the character ' +' is less than the
character 'J' because it comes before it in the
Unicode character set

m Appendix C provides an overview of Unicode

Comparing Characters (II)

m In Unicode, the digit characters (0-9) are
contiguous and in order

m Likewise, the uppercase letters (A-Z) and
lowercase letters (a-z) are contiguous and in

order
Characters Unicode Values
0-9 48 through 57
A-7Z 65 through 90
a—z 97 through 122

String equality

m Remember that in Java a character string is an
object

m The equal S method can be called with
strings to determine if two strings contain
exactly the same characters in the same order

m The equal S method returns a boolean result

if (namel.equals(name2))
System.out.println (“'Same name™);

String inequalities

m We cannot use the relational operators to
compare strings
m The St ri ng class contains 2 method called
conpar eTo to determine if one string comes
before another
m A call to nanmel. conpar eTo(nane2)
m returns zero if NAMEL and NaNe2 are equal (contain
the same characters)
m returns a negative value if NanMel is less than nane2
m returns a positive value if namel is greater than
name2

compareTo example

if (namel.compareTo(name2) < 0)
System.out.println (namel + "comes first");

else
if (namel.compareTo(name2) == 0)
System.out.println ("'Same name');
else

System.out.println (name2 + *comes first");

m Because comparing characters and strings is
based on a character set, it is called a
lexcicographic ordering

Lexicographic Ordering

m Lexicographic ordering is not strictly alphabetical
when uppercase and lowercase characters are
mixed

m For example, the string " Gr eat " comes before
the string " f ant ast i ¢" because all of the
uppercase letters come before all of the
lowercase letters in Unicode

m Also, short strings come before longer strings
with the same prefix (lexicographically)

m Therefore " DOOK" comes before
"bookcase"

Comparing Objects

m The == operator ¢an be applied to objects, as we
mentioned before

m The equal s method is also defined for all objects, but
unless we redefine it when we write a class, it has the
same semantics as the == operator

m It has been redefined in the St r i Ng class to compare
the characters in the two strings

® When you write a class, you can redefine the equal s
method to return true under whatever conditions are
appropriate

Repetition Statements

m Repetition statements allow us to execute a
statement multiple times, often referred to as
loops

m Like conditional statements, they are controlled
by boolean expressions

m Java has three kinds of repetition statements:
while, do, and for

m All are equivalent, but some are easier to use for
certain cases

The while Statement

w A while statement has the following syntax:

while (condition)
statement;

m If the condi ti on is true, the St at emrent is
executed

m Then the condition is evaluated again, and if it is
still true, the statement is executed again

m The statement is executed repeatedly #n#il the
condition becomes false

Logic of a while Loop

condition
evaluated

true

false

Example

m An example of a while statement:

int count = 1;

while(count < 5) {
System.out.printin(count);
count++;

}
m If the condition of a Whi | € loop is false
initially, the statement is never executed
m Therefore, the body of a Whi | e loop will
execute zero or more times

More complex example

m Maintain a running sum
w A sentinel value is a special input value that
represents the end of input
w Jnput validation
m “While the user types an invalid value, reject and
wait for a valid value.”
m Example: calculate mean of exams
m Similar to if statements, while statements can be
nested as well

Infinite Loops

® The body of a Whi | € loop eventually must
make the condition false

m If not, it is called an énfinite loop, which will
execute until the user interrupts the program

m This is a common logical error

® You should always double check the logic of a
program to ensure that your loops will terminate
normally

Infinite Loops
m An example of an infinite loop:

int count = 1;

while(count <= 25) {
System.out.printin(count);
count = count - 1;

}

m This loop will continue executing until
interrupted or until an underflow error occurs

Nested Loops

m How many times will the string " Her e" be
printed?

countl = 1;
while(countl <= 10) {
count2 = 1;
while(count2 <= 20) {
System.out.printIn(‘Here");
count2++;

b

countl++;

break, version 2

m We saw br eak in the context of SWi t ch, but it can
be used with Whi | € (and other loops) as well; for
example,

while(true) {
if(i > 10) break;
else i++;

}

m What is this code equivalent to?

m Generally, you don’t use break, but it’s useful to have,
especially if the while loop is very complex

m If you have nested loops, break only breaks out of the
most immediate loop, not all of them

m return can be used to break out of a bunch of loops, but avoid

The do Statement

w A do statement has the following syntax:

do {
statement;
} while(condition);

m The St at enment is executed once initially, and
then the condi ti on is evaluated

m The statement is executed repeatedly until the
condition becomes false

The do Statement

® An example of a d0 loop:

int count = 0;
do {
count++;
System.out.printin(count);
} while (count < 5);

m The body of 2 0O loop executes at least once
m What’s the result of this code fragment?
m dp is particularly useful for “interactive repetition”

10

Comparing while and do

The while Loop The do Loop

condition
evaluated

false

condition

evaluated true

false

The for Statement

w A for statement has the following syntax:

The initialization The statement is
is executed once executed until the
before the loop begins condition becomes false

for (initialization ; condition ; increment)
statement;

The increment portion is executed at
the end of each iteration

Logic of a for loop

condition
evaluated
true

false

11

The for Statement

m Afor loop is functionally equivalent to the
following Whi | e loop structure:

initialization;

while(condition) {
statement;
increment;

b

The for Statement

® An example of a f Or loop:

for (int count=1; count < 5; count++)
System.out.println (count);

m The initialization section can be used to declare
a variable

m Like 2 Whi | e loop, the condition of a f Or
loop is tested prior to executing the loop body

m Therefore, the body of a f Or loop will execute
Zero or more times

The for Statement

m The increment section can perform any
calculation

for (int num=100; num > O; num -= 5)
System.out.printin(num);

m Afor loop is well suited for executing
statements a specific number of times that can
be calculated or determined in advance

12

The for Statement

m Each expression in the header of a f Or loop is
optional

m If the initialization is left out, no initialization is
performed

m If the condition is left out, it is always
considered to be true, and therefore creates an
infinite loop

m If the increment is left out, no increment
operation is performed

Next time

m Finish for
m Start building more complex examples with loop

constructs

m Think about how algorithms are created using
conditions and loops

13

