CS1004: Intro to CS in
Java, Spring 2005
Lecture #15: Java conditionals/loops

Janak J Parekh
janak@cs.columbia.edu

Administrivia

m Homework due now
m Midterm on Thursday

m We'll stop the lecture at about noon and I’ll take
questions at that point

Conditional Statements

B A conditional statement lets us choose which
statement will be executed next

m The Java conditional statements are the:
m if statement
m if-clse statement
m ? operator (well, not quite a statement)
m switch statement

m Less “clumsy” than the assembly equivalents

The if Statement

m The #f statement has the following syntax:

The condition must be a
boolean expression. It must

ifisaJava evaluate to either true or false.
reserved word \/
~
if (condition)
statement;

p

If the condition is true, the statement is executed.
If it is false, the statement is skipped.

Boolean Expressions

w Java's equality operators ot relational operators all
return boolean results:

== equal to

= not equal to

< less than

> greater than

<= less than or equal to
>= greater than or equal to

m Remember, equality operator (==) vs.
assignment operator (=)
m Lower precedence than math operators

The if Statement

m An example of an if statement:

if (sum > MAX)
delta = sum - MAX;
System.out.println (*The sum is

m First the condition is evaluated -- the value of
Sumis either greater than the value of MAX or it
is not

m If the condition is true, the assighment
statement is executed -- if it isn’t, it is skipped.

m Either way, the call to pri nt | n is executed

next

+ sum);

Indentation

m The statement controlled by the i f statement is
indented to indicate that relationship

m The use of a consistent indentation style makes a
program easier to read and understand

m Although it makes no difference to the
compiler, proper indentation is crucial when the
code needs to be maintained

m Emacs will do this automatically for you; just hit
TAB once

Logical Operators

m Boolean expressions can also use the following
logical operators:
! Logical NOT
&& Logical AND
|| Logical OR

m Exactly like circuit/assembly equivalents
m Process boolean operands, and produce boolean
results

Logical Operators (II)

m Expressions that use logical operators can form

complex conditions
it (total < MAX+5 && !found)
System.out.println ("Processing..'");

m All logical operators have lower precedence than
the relational operators (and math operators)
m Personally, I would use parentheses

m Logical NOT has higher precedence than logical
AND and logical OR

Short-Circuited Operators

m The processing of logical AND and logical OR
is “short-circuited”

m If the left operand is sufficient to determine the
result, the right operand is not evaluated

if (count !'= 0 && total/count > MAX)
System.out.println ("Testing...");

m This type of processing must be used carefully

if-else

w An else clanse can be added to an i f statement to
make an 7f-else statement

it (condition)
statementl;
else
statement2;

m If the condition is true, Statementl is
executed; if the condition is false,
statement2 is executed

m One or the other will be executed, but not both

Indentation Revisited

m Remember that indentation is for the human
reader, and is ignored by the computer

m Emacs will help you avoid this confusion

if (totg
Sys o In ("Error!!™);
erro 2

Despite what is implied by the indentation, the
increment will occur whether the condition is
true or not

Block Statements

m Several statements can be grouped together into
a block statement delimited by braces

m A block statement can be used wherever a
statement is called for in the Java syntax rules

m Bracing can be spaced in different ways (book
uses gpen bracing, I use closed bracing)

if (total > MAX)

System.out.printin (“Error!!");
errorCount++;

¥

Block Statements (II)

mInanif-el se statement, the i f portion, or
the el se pottion, ot both, could be block
statements

if (total > MAX)

System.out.println (“Error!!");
errorCount++;

3

else

{
System.out.println (“Total: " + total);
current = total*2;

}

When in doubt, brace!

m [t’s okay to use braces even when you have one
statement

m I’ll almost always use braces, and will only
occasionally omit them

Else if

m We can have more than two conditions:

if(age < 20) {
System.out.printIn(*“You’re young!™”);

} else if(age > 20 && age < 40) {
System.out.printIn(“You’re not so young!™);

} else if(age > 40 && age < 60) {
System.out.printIn(“You’re a bit older!”);

} else {
System.out.printIn(*You’re still a student?”);

3

m Starts with the top clause and works down from there
m Last else is only run if none of the others matched
® Major bug(s) in this code; what is it?

Nested if Statements

m The statement executed as a result of an 1 £
statement or el se clause could be another 1 f
statement

m These are called nested if statements

m An else clause is matched to the last
unmatched if (no matter what the indentation
implies)

m Braces can be used to specify the 1 f statement
to which an el se clause belongs

m Not the same thing as else if

Let’s put it all together...

= Modify our Di eRol | er class to ask the user
to guess the value of the die

The Conditional Operator

m Java has a conditional operator that uses a boolean
condition to determine which of two expressions is
evaluated

m [ts syntax is:
condition ? expressionl : expression2

If the condition is true, expressionl is

evaluated; if it is false, eXpression2 is evaluated

The value of the entire conditional operator is the value

of the selected expression
m Sometimes called an “immediate if”’

The Conditional Operator (IT)

m The conditional operator is similar to an'i f - el se
statement, except that it is an expression that returns a
value

m For example:

larger = ((numl > num2) ? numl : num2);

m If nund is greater than NUNER, then NUIML is assigned
to | ar ger; otherwise, NUNR is assigned to | ar ger

m The conditional operator is fernary because it requires
three operands

m Use parentheses to avoid confusion

The Conditional Operator (III)

m Another example:

System.out.println ("Your change is " + count +
((count == 1) ? "Dime"™ : "Dimes™));

m If count equals 1, then " Di me" is printed
m [f count is anything other than 1, then
"Di mes" is printed

The switch Statement

m The switch statement provides another way to
decide which statement to execute next

m The switch statement evaluates an expression,
then attempts to match the result to one of
several possible cases

m Each case contains a value and a list of
statements

m The flow of control transfers to statement
associated with the first case value that matches

The switch Statement (IT)

m The general syntax of a SWi t Ch statement is:

switch switch (expression)
and {
caseA case valuel :
are statement-listl
reserved case value2 :
words statement-list2 4—|
case value3 :
statement-list3 If expression
case ... matches value2,
control jumps
} to here

switch and break

m Often a break statement is used as the last
statement in each case's statement list
m A break statement causes control to transfer to the
end of the switch statement
m [f 2 break statement is not used, the flow of
control will continne into the next case
m Biggest common bug with switch, and a reason
why I use it sparingly

switch Example

m An example of a switch statement:
switch (option)

case "A":
aCount++;
break;

case "B":
bCount++;
break;

case "C":
cCount++;
break;

switch and default case

m A SW t ch statement can have an optional
default case

m The default case has no associated value and
simply uses the reserved word def aul t

m If the default case is present, control will
transfer to it if no other case value matches

m If there is no default case, and no other value
matches, control falls through to the statement
after the switch

What can you switch on?

m The expression of 2 SWi t Ch statement must
result in an zntegral type, meaning an integer
(byte,short,int,l ong) orachar

m It cannot be a2 bool ean value or a floating
point value (f | oat or doubl e)

m The implicit boolean condition in a SWi t ch
statement is equality (==, not .equals())

m Common for things like menu systems (“Enter
one of the above 5 options”)

Comparing Data

m When comparing data using boolean
expressions, it's important to understand the
nuances of certain data types

m We’ve talked about these, but now let’s
formalize it

Comparing Float Values

® You should rarely use the equality operator (==
when comparing two floating point values
(f1 oat ordoubl e)

m Two floating point values are equal only if their
underlying binary representations match exactly

m Computations often result in slight differences
that may be irrelevant

m In many situations, you might consider two
floating point numbers to be "close enough"
even if they aren't exactly equal

Comparing Float Values (II)

m To determine the equality of two floats, you may
want to use the following technique:
if (Math.abs(fl - f2) < TOLERANCE)
System.out.println (“Essentially equal™);

m If the difference between the two floating
point values is less than the tolerance, they are
considered to be equal

m The tolerance could be set to any appropriate
level, such as 0.000001

10

Comparing Characters

m As we've discussed, Java character data is based
on the Unicode character set

m Unicode establishes a particular numeric value
for each character, and therefore an ordering

m We can use relational operators on character
data based on this ordering

m For example, the character ' +' is less than the
character 'J' because it comes before it in the
Unicode character set

m Appendix C provides an overview of Unicode

Comparing Characters (II)

m In Unicode, the digit characters (0-9) are
contiguous and in order

m Likewise, the uppercase letters (A-Z) and
lowercase letters (a-z) are contiguous and in

order
Characters Unicode Values
0-9 48 through 57
A-7Z 65 through 90
a—z 97 through 122

String equality

m Remember that in Java a character string is an
object

m The equal S method can be called with
strings to determine if two strings contain
exactly the same characters in the same order

m The equal S method returns a boolean result

if (namel.equals(name2))
System.out.println (“'Same name™);

11

String inequalities

m We cannot use the relational operators to
compare strings
m The St ri ng class contains 2 method called
conpar eTo to determine if one string comes
before another
m A call to nanmel. conpar eTo(nane2)
m returns zero if NAMEL and NaNe2 are equal (contain
the same characters)
m returns a negative value if NanMel is less than nane2
m returns a positive value if namel is greater than
name2

compareTo example

if (namel.compareTo(name2) < 0)
System.out.println (namel + "comes first");

else
if (namel.compareTo(name2) == 0)
System.out.println ("'Same name');
else

System.out.println (name2 + *comes first");

m Because comparing characters and strings is
based on a character set, it is called a
lexcicographic ordering

Lexicographic Ordering

m Lexicographic ordering is not strictly alphabetical
when uppercase and lowercase characters are
mixed

m For example, the string " Gr eat " comes before
the string " f ant ast i ¢" because all of the
uppercase letters come before all of the
lowercase letters in Unicode

m Also, short strings come before longer strings
with the same prefix (lexicographically)

m Therefore " DOOK" comes before
"bookcase"

12

Comparing Objects

m The == operator ¢an be applied to objects, as we
mentioned before

m The equal s method is also defined for all objects, but
unless we redefine it when we write a class, it has the
same semantics as the == operator

m It has been redefined in the St r i Ng class to compare
the characters in the two strings

® When you write a class, you can redefine the equal s
method to return true under whatever conditions are
appropriate

Midterm exam

m Three parts
m True/False (4-5 questions)
m Short answer (3-4 questions)
m Long answer (one question)
m Covers lectures 1-14,S/G ch. 1, 4 and 5, and
L/Lch. 1-4

m Except stuff at the very end of lecture 14 (if
statements)

Sample T/F question

m In this section, assert whether the proposition is
true or false, and provide a one-sentence
justification as to why. (If you feel an assertion
is ambiguous, review the course materials: it will
have been well-defined somewhere.)

® You run a Java program on CUNIX by typing Java
Foo. Java af the § prompt and hitting Enter.

13

Sample short-answer question

w State two advantages and two disadvantages of using
applets as opposed to applications.

m Some short-answer questions may be more
structured than others:

w You're given the following piece of code. Explain what it
does.

Sample long-answer question

m (L/L exercise 4.1) Write a method called
randomInRange that accepts two integer parameers
representing a range. The method should return a
random integer in the specified range (inclusive). Assume
that the first parameter is greater than the second.

m Well, this one is only 1 line of code, so it might
be a bit longer

m By the way, I wi// ask theory questions: these are
just examples

Next time
m Exam. ®
m After break, finish chapter 5 of L/L
m Loops

14

