CS1004: Intro to CS in
Java, Spring 2005
Lecture #14: Java OO cont’d.

Janak J Parekh
janak@cs.columbia.edu

Administrivia

m Homework due Tuesday
m Midterm next Thursday

m [don’t have a formal midterm review, but I’ll leave a
little bit of next class, plus office hours right after
class, for questions/discussion

m Next class isn’t until 1:10pm, so we can hang out in
the classroom for a while

Java modifiers, redux

m Actually, you can have private classes, but only if
they’re “inner classes”, i.e., inside another class
m Constants frequently use the static keyword as
well; what exactly does static mean?
public static final int NUM_SIDES =
6;
m You can also create static methods, just like the utility
methods in the Math class

Finish circle example

m ... and square example

m We're not going to worry about the GUI part
(yet)

Graphical Applications

m Except for the applets seen in Chapter 2, the
example programs we've explored thus far have
been text-based

m Let's examine some Java applications that have
graphical components

m These components will serve as a foundation to
programs that have true graphical user interfaces
(GUlIs)

m Applets can use these, too

GUI Components

w A GUI component is an object that represents a
screen element such as a button or a text field
m GUI-related classes are defined primarily in the
j ava. awt and the j avax. SwWi ng packages
m First major component: a container
m A GUI container is a component that is used to hold
and organize other components
m A frame is a container that is used to display a GUI-
based Java application

Frames and panels

m A frame is displayed as a separate window with a title
bar — it can be repositioned and resized on the screen as
needed

m “Heapyweight”: managed by the underlying operating system

m A panel is a container that cannot be displayed on its

own but is used to organize other components
m “Ljghtweight”: managed by the Java program itself

m A panel must be added to another container to be

displayed

m But you can zes panels to form more sophisticated GUIs

Labels

m A Jabelis a GUI component that displays a line
of text

m Labels are usually used to display information or
identify other components in the interface

m Let's look at a simple example

m This is not like g.drawString(); it’s an object-
oriented approach to organizing text

Images

m Images are often used in a programs with a
graphical interface

m Java can manage images in both JPEG and GIF
formats

m As we've seen, a JLabel object can be used to
display a line of text

m [t can also be used to display an image
m The | magel con class is used to represent an

image that is stored in a label

m That is, a label can be composed of text, and

image, or both at the same time

So how do we paint()?

m We can still make a paint method in a component, so
that we can mix a structured GUI interface along with
custom elements

m We extend a JPanel and puta

pai nt Component (..) method inside it

Other GUI constructs (like a JLabel) already have

useful pai nt Comrponent implementations, so you

rarely put one explicitly in there

m Note that we can draw o7 a panel or put stuff iz the
panel

Events

m An event is an object that represents some
activity to which we may want to respond
m For example, we may want our program to
perform some action when the following occurs:
m the mouse is moved or dragged
m 2 mouse button is clicked
m 2 graphical button is clicked
m 2 keyboard key is pressed
H 2 timer expires
m Events often correspond to user actions, but not
always

Events and Listenets

m The Java standard class library contains several
classes that represent typical events

m Components, such as a graphical button,
generate (or fire) an event when it occurs

m A Jistener object "waits" for an event to occur
and responds accordingly

m We can design Zstener objects to take whatever
actions are appropriate when an event occurs

GUI Development

m Generally we use components and events that
are predefined by classes in the Java class library
m Therefore, to create a Java program that uses a
GUI we must:
m instantiate and set up the necessary components
m implement listener classes for any events we care
about
m cstablish the relationship between listeners and
components that generate the corresponding events

Buttons

w A push button is a component that allows the user
to initiate an action by pressing a graphical
button using the mouse

= A push button is defined by the JBut t on class

m [t generates an action event

m Let’s set up a quick example

Flow of Control

m As we discussed earlier, code usually runs linearly
m We can affect this flow of control in one of two
ways
w Conditional operation: decide whether or not to execute
a particular statement
w [ferative operation: execute a statement over and over,
repetitively
m These decisions are based on boolean
expressions

Conditional Statements

A conditional statement lets us choose which
statement will be executed next

m The Java conditional statements are the:
m if statement
m if-else statement
m ? operator (well, not quite a statement)
m switch statement

m Less “clumsy” than the assembly equivalents

The if Statement

m The #f statement has the following syntax:

The condition must be a
boolean expression. It must

ifisaJava evaluate to either true or false.
reserved word j
~
if (condition)
statement;

1

If the condi tion is true, the statement is executed.
If it is false, the statement is skipped.

Next time

m Continue chapter 5 of L/L.
m Midterm review

m Today’s class is the last material for the midterm

