CS1004: Intro to CS in
Java, Spring 2005
Lecture #13: Java OO cont’d.

Janak J Parekh
janak@cs.columbia.edu

Administrivia

® Homework due next week

m Problem #2 revisited

Constructors, revisited

m Remember: a constructor has #o return type
specified in the method header, not even voi d
m A common ertor is to put a return type on a
constructot, which makes it a “regular” method that
happens to have the same name as the class
m The programmer does not have to define a
constructor for a class
m Each class has a defanlt constructor that accepts no
patameters

Defining the Die class

® Goal: design the Di € class with other data and
methods to make it a versatile and reusable
resource

m That said, it doesn’t mean a program has to use
all the features of a class

m Let’s write out what a possible Die class might
be
®m An int that has the face value
m Methods to roll and set the die explicitly
m Methods to get info on the die’s current value

DieRoller class

m Once we've defined a Di @, we need to actually
use it somehow
m We'll define a class called Di eRol | er | in
which we’ll actually manipulate the die
m This is a common model
m Define one or mote data classes
m Establish one or mote program classes, with a mMai n
method

Variables and “scope”

m As you may have guessed, there’s multiple places

to put variables in your program (scope)
m At the class level (instance variables)
m Inside a method (focal variables)

m Variables declared inside one method cannot be
used in another method without being explicitly
passed to it

m What happens when you declate a variable with
the same name in two places?

The “toString” Method

m All classes that represent objects should define a
t oSt ri ng method

m The t 0St ri ng method returns a character
string that represents the object in some way

m It is called automatically when an object is
concatenated to a String or when it is passed to
the pri nt 1 n method

UML Diagrams

m UML stands for the Unified Modeling Ianguage

w UML diagrams show relationships among classes
and objects

m A UML dlass diagram consists of one or more
classes, each with sections for the class name,
attributes (data), and operations (methods)

m Lines between classes represent associations

m A dotted arrow shows that one class #ses the
other (calls its methods)

UML Class Diagrams

m A UML class diagram for our example

m We’re not going to explore this too deeply, just
enough for basic diagramming

DieRoller = Die

value : int

main (args : String[]) : void roll) : int
setValue (int value) : void
getValue() : int

toString() : String

Encapsulation

m We can take one of two views of an object:
m jnternal - the details of the variables and methods of
the class that defines it
m external - the services that an object provides and
how the object interacts with the rest of the system
m “Box” metaphor
m From the external view, an object is an
encapsulated entity, providing a set of specific
services
m These services define the inferface to the object

Object-oriented design

m One object (called the ¢/iens) may use another object for
the services it provides

m The client of an object may request its services (call its
methods), but it should not have to be aware of how
those services are accomplished

m Any changes to the object's state (its variables) should

be made by that object's methods

We should make it difficult, if not impossible, for a

client to access an object’s variables directly

m Not a strict requirement, but generally considered good
design

Visibility Modifiers

m In Java, we accomplish encapsulation through
the appropriate use of visibility modifiers

m A modifier specifies particular characteristics of a
method or data (f i nal)

®m Java has three visibility modifiers: publ i c,
protected,andprivate

m The pr ot ect ed modifier involves
inheritance, which we will discuss later

Visibility Modifiers, cont’d.

w Public visibility: can be referenced anywhere

w Private visibility: can be referenced only within
that class

m No visibility modifier is default visibility, and can
be referenced by any class in the same package

m An overview of all Java modifiers is presented in
Appendix E

m So what’s their preferred use?

Visibility for Variables

m Public variables violate encapsulation because
they allow the client to “reach in” and modify
the values directly

m Therefore instance variables should generally
not be declared with public visibility

m Jt is acceptable to give a constant public
visibility — although the client can access it, its
value cannot be changed

Visibility for Methods

m Methods that provide the object's services (service
methods) are declared with public visibility so that
they can be invoked by clients

m Methods to assist service methods (support
methods) are not intended to be called by a client
and should not be declared with public visibility

Visibility Modifiers: Summary

public private

Variables

Methods

Accessors and Mutators

m If you want to let a client access data in a class, provide
accessor and mutator methods

m The names of accessor and mutator methods usually
take the form get Xand set X, respectively, where Xis
the name of the value

m Sometimes called “getters” and “setters”

m The use of mutators gives the class designer the ability
to restrict a client’s options to modify an object’s state

m For example, restrict setting the value of a Di € to a valid
range

Enumerated Types

m If you’re defining a class just to store one basic property,
consider using an enumerated type instead

m An enumerated type establishes all possible values for a variable
of that type; values are identifiers of your own choosing

m The following declaration creates an enumerated type called
Season
enum Season {wi nter, spring, sumver, fall};

= Any number of values can be listed

m Specify type of Die:
enum Di eType {weighted, fair};

m No instantiation needed:

Di eType dt = Di eType. wei ght ed;

Ordinal Values

m Internally, each value of an enumerated type is stored as
an integer, called its ordinal valune

m The first value in an enumerated type has an ordinal
value of zero, the second one, and so on

m However, you cannot assign a numeric value to an
enumerated type, even if it corresponds to a valid
ordinal value

m For #ype safety purposes

m The or di nal method returns the ordinal value of the
object

m The nane method returns the name of the identifier
corresponding to the object's value

Let’s do one more example

m Let’s create two geometric shapes, circle and
square, and play with them briefly

Next time

m Finish GUIs
m Start chapter 5 of L/L

