CS1004: Intro to CS in
Java, Spring 2005
Lecture #12: Java OO cont’d.

Janak J Parekh
janak@cs.columbia.edu

Agenda

m Continue OO concepts

m We're going to hold off the GUI examples for
Chapter 3 and 4 until next week; I'd like to
finish the discussion on classes and objects first

The Random Class

m The Randomclass is part of the j ava. uti |
package

m It provides methods that generate
pseudorandom numbers

= A Randomobject performs complicated
calculations based on a seed value to produce a
stream of seemingly random values

m Let’s try a quick example (more complex one on
page 1206)




The Math Class

m The Mat h class is part of j ava. | ang

= The Mat h class contains methods that perform vatious
mathematical functions, including absolute value,
square root, exponentiation, and trigonometric
functions

m The methods of the Mat h class are static methods (also
called class methods)

m Static methods can be invoked through the class name
itself — no object of the Mat h class is needed
val ue = Math.cos(90) + Math.sqrt(delta);

Formatting Output

= As HW#2 demonstrated, Java will use too many
decimal places by default

m The Java standard class library contains classes
that provide formatting capabilities to customize
output

m The Nunber For mat class allows you to
format values as cutrency or percentages

m The Deci mal For mat class allows you to
format values based on a pattern

m Both are part of the j ava. t ext package

NumberFormat

m The Nurrber For mat class has static methods
that return a formatter object
get Currencyl nst ance()
get Percent | nst ance()
m Each formatter object has a method called
f or mat that returns a String with the specified
information in the appropriate format




DecimalFormat

The Deci mal For mat class can be used to format a
floating point value in various ways

For example, you can specify that the number should
be truncated to three decimal places

The constructor of the Deci mal For mat class takes
a string that represents a pattern for the formatted
number

For HW#2, you could have used

Deci mal For mat df = new
Deci mal For mat (" 0. ##")

Wrapper Classes

m Sometimes, we’ll want to store the primitive
objects inside a reference object

m We'll learn how to make our own objects, but
Java provides wrapper classes for this purpose.

m These wrapper classes also have a number of
useful utility methods and attributes that work
with the corresponding primitive type

= Simple mnemonic: “capital form” of existing

type

Primitive Type Wrapper Class

byt e Byt e
short Short

i nt I nt eger

| ong Long

fl oat FI oat
doubl e Doubl e
char Char act er
bool ean Bool ean

voi d Voi d




Creating a wrapper class object

m The following declaration creates an | nt eger
object which represents the integer 40 as an
object

I nteger age = new I nteger (40);

m An object of a wrapper class can be used in any
situation where a primitive value will not suffice

m For example, some objects serve as containers
of other objects
m We'll see this later in the semester

Utility methods in wrapper classes

m Wrapper classes also contain static methods that help
manage the associated type
m For example, the | Nt eger class contains a method to
convert an integer stored ina St ri ng to an i nt
value:
num = | nteger.parselnt(str);
m The wrapper classes often contain useful constants as

well
m M N_VALUE and MAX_VALUE, which hold the smallest and

largest i Nt values

Autoboxing

m Java 1.5 can auto-convert between a value of a
primitive type and that of a reference type; this
is called autoboxing

I nt eger obj;
int num= 42;
obj = num

m The reverse conversion (called #nboxing) also
occurs automatically as needed




Writing our own classes

m The programs we’ve written in previous examples have
used classes defined in the Java standard class library

m Now we will begin to design programs that rely on
classes that we write ourselves

m The class that we’ve written so far contain only one
method — main — and that’s just the starting point of a
program

m True object-oriented programming is based on defining
classes that represent objects with well-defined
characteristics and functionality

® Becoming an “expert” takes time

Book’s example: Die

m Objects have state and behavior
m Consider a six-sided die (singular of dice)
m State: what’s the currently rolled value of the die?
m Behavior: It can be (re-)rolled
m We can represent a die in softwate by designing
a class called Di e that models this state and
behavior
m The class serves as the blueprint for a die object
m We can then instantiate as many die objects as
we need for any particular program

Classes

m A class can contain data declarations (state) and
method declarations (functionality)

m So far, we haven’t used any data declarations,
and only one method declaration: main

m For our Di € class, we can declare an int that
represents the current value showing on the face

m One of the methods would “roll” the die by
setting that value to a random number between
one and six




Instance Variables

m We can not only create a variable inside a
method, but outside it; these are called znstance
variables

m Each object based on a class can have different
values in these instance variables

m Goal: for every Die that we create, we want an
individual value for the die

m The objects of a class share the method
definitions, but each object has its own data
space

Instance Data

m If we have two Di € objects in a Di eRol | er
class, it might look like the following:

Method Declarations

m A method begins with a declaration, followed by code
that will be executed when the method is invoked (called)

® When a method is invoked, the flow of control jumps
to the method and executes its code

m When complete, the flow returns to the place where the
method was called and continues

m The invocation may or may not refurn a value,
depending on how the method is defined

m Think of methods as (complex) mathematical functions




Method Header

= A method declaration begins with a wethod header

int add (int numl, int num2)

I

method
name

parameter list

return
type The parameter list specifies the
type and name of each parameter

The name of a parameter in the
method declaration is called a
formal parameter

Method Body

m The method header is followed by the method
body

int add (int numl, int num2)

{

int sum = numl + num2;

return sum;

created each time
the method is called,
and is destroyed
when it finishes
executing

¥ ] sum is local data; it’s

The return expression
must be consistent with
the return type

The return Statement

m The return type of a method indicates the type of
value that the method sends back to the calling
location

m A method that does not return a value has a
VOi d return type

w A return statement specifies the value that will be
returned

return expression;
m [ts expression must conform to the return type




Parametetrs

m When a method is called, the actual parameters
in the invocation are copied into the formal
parameters in the method header

result = obj.add (25, 30);

—
1

int add (int numl, int num2)
{

int sum = numl + num2;

return sum;

}

Local Data

m As we’ve seen, local variables can be declared
inside a2 method

m The formal parameters of a method create
antomatic local variables when the method is
invoked

® When the method finishes, all local variables are
destroyed (including the formal parameters)

m Keep in mind that instance variables, declared at
the class level, exists as long as the object exists

Constructors

m As mentioned previously, a constructor is a special
method that is used to set up an object when it
is initially created from a class

m A constructor has the same name as the class,
and no return type

= Major bug alert!

m You can have a constructor set a default value or

have it take an znitial value for an object




Defining the Die class

® Goal: design the Di € class with other data and
methods to make it a versatile and reusable
resource

m That said, it doesn’t mean a program has to use
all the features of a class

m Let’s write out what a possible Die class might
be
® An int that has the face value
m Methods to roll and set the die explicitly
m Methods to get info on the die’s current value

Next time

m Continue Java OO concepts




