CS1004: Intro to CS in
Java, Spring 2005
Lecture #10: Computer architecture

Janak J Parekh
janak@cs.columbia.edu

Administrivia

m HW#2 due Tuesday

Mass Storage

m RAM is volatile

m Not useful for permanent storage, and expensive in large
quantities
m Use nonvolatile mass storage (magnetic media, flash) for
permanent storage

m Random/direct access: hard drives, CD/DVD-ROMs
m Uses its own addressing scheme to access data

m Sequential access: tape drives
m Stotes data sequentially; slow

m Primarily for backup nowadays

Hard Disks

m Data stored on (hard) e
spinning disks (platters) < / .
m Disk divided into :

concentric rings (#racks)
Read/write head moves
from one ring to another
while disk spins

m Access time depends on:

m Time to move head to
cotrect sector (seek)

m Time for sector to spin to

data location (latency)

I/0 Controller

m Intermediary between central processor and I/O
devices

m Hard drives are zuch slower than memory, so...

m Processor sends request and data, then goes on with
its work

m /O controller interrupts processor when request is
complete

w Memory hierarchy of a computer (registers fastest,
tape slowest)

Inserrupt sigral |completion)

oo

Processar

Memary 1O buflor

1/0 contraller

]l.-'o davice

Organization of an 1/O Controller (page 202)

The Arithmetic/Logic Unit

m Actual computations are performed
m Primitive operation circuits
m Arithmetic (ADD, etc.)
m Comparison (CE, etc.)
m Logic (AND, etc.)
m Data inputs and results stored in registers

m Multiplexor selects desired output

ALU Process

m Values for operations copied into ALU’s input
register locations

m All circuits compute results for those inputs

m Multiplexor selects the one desired result from
all values

m Result value copied to desired result register

Al

Line 0
e [EE]

Line 2
L]

o —]
Selector lines

Using a Multiplexor Circuit to Select the Proper ALU Result (p. 207)

The Control Unit

m Manages stored program execution
m Task

m Ferch from memory the next instruction to be
executed

® Decode it: determine what is to be done

m Fxecute it: issue appropriate command to ALU,
memoty, and I/O controllers

m Instructions are selected from an zzstruction set
langnage

Control Unit Components

m Parts of control unit
m Links to other subsystems (I/O controllets, etc.)
m Instruction decoder circuit
m Two more special registers:

m Program Counter (PC): Stores the memory address of the
next instruction to be executed

m Instruction Register (IR): Stores the code for the current
instruction
m We follow the feteh-decode-execute cycle repeatedly
until the machine is turned off

- — — m— T — T
¥ gic unit Ing = Contral unit
Bus
T T T —
- w0 1 1 1
L A Les]
MAR MR o PC ®
-
s ¥
RS ¥ '
signal |
L L ail] Ingiruction
Tes decodes ©—
et | Pachy/Saces cecs Conenl
ity conraller ! 1O device o
, t- = 1
- . LR
ap =
Selecior lnas
[-

Bandorm oxcas menory

Condiion cods register

The Organization of a Von Neumann Computer (p. 516)

Machine Language Instructions

m Can be decoded and executed by control unit
m Parts of instructions

m Operation code (opcode): Unique unsigned-integer
code assigned to each machine language operation

m Address field(s): Memory addresses of the values on
which operation will work

Operation code Address field 1 Address field 2 e

Main types of instructions

m Data transfer
® Move values to and from memory and registers
m Fetch/store operations
m Arithmetic/logic
m Perform ALU operations that produce numeric values
m Compares
m Set bits of compare register to hold result
m Branches

® Jump to a new memory address to continue processing

Let’s design a processor

m Flexibility as to how we design it
m RISC or CISC — how many instructions? How many
operands?
m We'll stick to one decimal operand for simplicity
m How many registers?

m Book’s convention: we’ll use one temporary register cell
(“R”) for math operations

m Rest will be to and from main memory

» _Accummulator architecture: early Intel CPUs detived from this
m What's the setup of the memory for data or code?

m For simplicity’s sake, we'll keep everything near each other

Book’s hypothetical machine: basic

operations
Binary opcode Operation Meaning
0000 LOAD X CONX) 2> R
0001 STORE X R > CON(X)
0010 CLEAR X 02> CONX)
0011 ADD X R+ CONX) 2> R
0100 INCREMENT X CONX) + 1 > CON X
0101 SUBTRACT X R-CONX) >R
0110 DECREMENT X |CON(X) -1 2 CON(X)
0111 COMPARE X Sets “condition code” for
JUMPs

Dealing with compare

m We want to design conditional code: based on a particular
result, run different pieces of code
m COMPARE will set one of three “condition codes” (in
a special register) to 1, and the rest to 0
m GT (greater than)
m EQ (equal)
m LT (less than)
m We can then tell the processor to jump to other code
based on the result

m We'll explore conditionals in much greater detail in Java

Book’s hypothetical machine: jumps

and I/0
Binary opcode | Operation Meaning
1000 JUMP X Get next instruction from memory

location X

1001 JUL\’H)GT X Get next instruction from X if GT = 1
1010 JUL\’H)EQ X Get next instruction from X if EQ = 1
1011 JUL\/H)LT X Get next instruction from X if LT = 1
1100 JUL\’H)NEQ X Get next instruction from X if EQ =1
1101 INX Get input and store in X
1110 OouUT X Output (in decimal) value at X
1111 HALT Stop program execution

Simple examples

m Practice problem 1, p. 213: set « to the value
b+etd

m Practice problem 2, p. 213: if (a = b), set ¢ to the
value of 4
m Note different use of equals in the book — we mean

equality here, not assignment

m Let’s assume « is at memory location 100, 4 is at
101, cat 102, 4at 103, and that the code starts at
memory location 50

The Future: Non-Von Neumann
Architectures

m Physical limitations on speed of Von Neumann
computers
m Non-Von Neumann architectures explored to bypass
these limitations
m Parallel computing architectures can provide
improvements: multiple operations occur at the same
time
m SIMD instructions: apply single instruction to a vector of
data
m MIMD instructions: essentially multiple closely coordinated
processors in parallel
m Hyperthreading, dual-core processors

Segue/next time

m Start thinking about memory and object
management in Java

m Chapter 3 of Lewis/Loftus covers how to use
existing classes and object in Java

m Chapter 4 will cover how to make our own classes
in greater detail

m Memory architecture we’ve just discussed will
help visualize how objects work

