
1

CS1004: Intro to CS in CS1004: Intro to CS in
Java, Spring 2005Java, Spring 2005

Lecture #10: Computer architectureLecture #10: Computer architecture

Janak J ParekhJanak J Parekh
janak@cs.columbia.edujanak@cs.columbia.edu

AdministriviaAdministrivia

HW#2 due TuesdayHW#2 due Tuesday

Mass StorageMass Storage

RAM is RAM is volatilevolatile
Not useful for permanent storage, and expensive in large Not useful for permanent storage, and expensive in large
quantitiesquantities

Use Use nonvolatilenonvolatile mass storage (magnetic media, flash) for mass storage (magnetic media, flash) for
permanent storagepermanent storage

Random/direct access: hard drives, CD/DVDRandom/direct access: hard drives, CD/DVD--ROMsROMs
Uses its own addressing scheme to access dataUses its own addressing scheme to access data

Sequential access: tape drivesSequential access: tape drives
Stores data sequentially; slowStores data sequentially; slow
Primarily for backup nowadaysPrimarily for backup nowadays

2

Hard DisksHard Disks

Data stored on (hard) Data stored on (hard)
spinning disks (spinning disks (plattersplatters))
Disk divided into Disk divided into
concentric rings (concentric rings (trackstracks))
Read/write head moves Read/write head moves
from one ring to another from one ring to another
while disk spinswhile disk spins
Access time depends on:Access time depends on:

Time to move head to Time to move head to
correct sector (seek)correct sector (seek)
Time for sector to spin to Time for sector to spin to
data location (latency)data location (latency)

I/O ControllerI/O Controller

Intermediary between central processor and I/O Intermediary between central processor and I/O
devicesdevices
Hard drives are Hard drives are muchmuch slower than memory, soslower than memory, so……

Processor sends request and data, then goes on with Processor sends request and data, then goes on with
its workits work
I/O controller I/O controller interruptsinterrupts processor when request is processor when request is
completecomplete

Memory hierarchyMemory hierarchy of a computer (registers fastest, of a computer (registers fastest,
tape slowest)tape slowest)

Organization of an I/O Controller (page 202)Organization of an I/O Controller (page 202)

3

The Arithmetic/Logic UnitThe Arithmetic/Logic Unit

Actual computations are performedActual computations are performed
Primitive operation circuits Primitive operation circuits

Arithmetic (ADD, etc.)Arithmetic (ADD, etc.)
Comparison (CE, etc.)Comparison (CE, etc.)
Logic (AND, etc.) Logic (AND, etc.)

Data inputs and results stored in registersData inputs and results stored in registers
Multiplexor selects desired outputMultiplexor selects desired output

ALU ProcessALU Process

Values for operations copied into ALUValues for operations copied into ALU’’s input s input
register locationsregister locations
All circuits compute results for those inputsAll circuits compute results for those inputs
Multiplexor selects the one desired result from Multiplexor selects the one desired result from
all valuesall values
Result value copied to desired result registerResult value copied to desired result register

Using a Multiplexor Circuit to Select the Proper ALU Result (p. Using a Multiplexor Circuit to Select the Proper ALU Result (p. 207)207)

4

The Control UnitThe Control Unit

Manages stored program executionManages stored program execution
TaskTask

FetchFetch from memory the next instruction to be from memory the next instruction to be
executedexecuted
DecodeDecode it: determine what is to be doneit: determine what is to be done
ExecuteExecute it: issue appropriate command to ALU, it: issue appropriate command to ALU,
memory, and I/O controllersmemory, and I/O controllers

Instructions are selected from an Instructions are selected from an instruction set instruction set
languagelanguage

Control Unit ComponentsControl Unit Components

Parts of control unitParts of control unit
Links to other subsystems (I/O controllers, etc.)Links to other subsystems (I/O controllers, etc.)
Instruction decoder circuitInstruction decoder circuit
Two more special registers:Two more special registers:

Program Counter (PC): Stores the memory address of the Program Counter (PC): Stores the memory address of the
next instruction to be executednext instruction to be executed
Instruction Register (IR): Stores the code for the current Instruction Register (IR): Stores the code for the current
instructioninstruction

We follow the We follow the fetchfetch--decodedecode--executeexecute cycle repeatedly cycle repeatedly
until the machine is turned offuntil the machine is turned off

The Organization of a Von Neumann Computer (p. 516)

5

Machine Language InstructionsMachine Language Instructions

Can be decoded and executed by control unitCan be decoded and executed by control unit
Parts of instructionsParts of instructions

Operation code (Operation code (opcodeopcode): Unique unsigned): Unique unsigned--integer integer
code assigned to each machine language operationcode assigned to each machine language operation
Address Address field(sfield(s): Memory addresses of the values on): Memory addresses of the values on
which operation will workwhich operation will work

Main types of instructionsMain types of instructions

Data transferData transfer
Move values to and from memory and registersMove values to and from memory and registers
Fetch/store operationsFetch/store operations

Arithmetic/logicArithmetic/logic
Perform ALU operations that produce numeric valuesPerform ALU operations that produce numeric values

ComparesCompares
Set bits of compare register to hold resultSet bits of compare register to hold result

BranchesBranches
Jump to a new memory address to continue processingJump to a new memory address to continue processing

LetLet’’s design a processors design a processor

Flexibility as to how we design itFlexibility as to how we design it
RISC or CISC RISC or CISC –– how many instructions? How many how many instructions? How many
operands?operands?

WeWe’’ll stick to one ll stick to one decimaldecimal operand for simplicityoperand for simplicity
How many registers?How many registers?

BookBook’’s convention: wes convention: we’’ll use one temporary register cell ll use one temporary register cell
((““RR””) for math operations) for math operations
Rest will be to and from main memoryRest will be to and from main memory
AccumulatorAccumulator architecture: early Intel CPUs derived from thisarchitecture: early Intel CPUs derived from this

WhatWhat’’s the setup of the memory for data or code?s the setup of the memory for data or code?
For simplicityFor simplicity’’s sake, wes sake, we’’ll keep everything near each otherll keep everything near each other

6

BookBook’’s hypothetical machine: basic s hypothetical machine: basic
operationsoperations

Sets Sets ““condition codecondition code”” for for
JUMPsJUMPs

COMPARE XCOMPARE X01110111
CON(X) CON(X) –– 1 1 CON(X)CON(X)DECREMENT XDECREMENT X01100110
R R –– CON(X) CON(X) RRSUBTRACT XSUBTRACT X01010101
CON(X) + 1 CON(X) + 1 CON XCON XINCREMENT XINCREMENT X01000100
R + CON(X) R + CON(X) RRADD XADD X00110011
0 0 CON(X)CON(X)CLEAR XCLEAR X00100010
R R CON(X)CON(X)STORE XSTORE X00010001
CON(X) CON(X) RRLOAD XLOAD X00000000
MeaningMeaningOperationOperationBinary Binary opcodeopcode

Dealing with compareDealing with compare

We want to design We want to design conditionalconditional code: based on a particular code: based on a particular
result, run different pieces of coderesult, run different pieces of code
COMPARE will set one of three COMPARE will set one of three ““condition codescondition codes”” (in (in
a special register) to 1, and the rest to 0a special register) to 1, and the rest to 0

GT (greater than)GT (greater than)
EQ (equal)EQ (equal)
LT (less than)LT (less than)

We can then tell the processor to We can then tell the processor to jump jump to other code to other code
based on the resultbased on the result
WeWe’’ll explore conditionals in much greater detail in Javall explore conditionals in much greater detail in Java

BookBook’’s hypothetical machine: jumps s hypothetical machine: jumps
and I/Oand I/O

Stop program executionStop program executionHALTHALT11111111

Output (in decimal) value at XOutput (in decimal) value at XOUT XOUT X11101110
Get input and store in XGet input and store in XIN XIN X11011101

Get next instruction from X if EQ = 1Get next instruction from X if EQ = 1JUMPNEQ XJUMPNEQ X11001100

Get next instruction from X if LT = 1Get next instruction from X if LT = 1JUMPLT XJUMPLT X10111011

Get next instruction from X if EQ = 1Get next instruction from X if EQ = 1JUMPEQ XJUMPEQ X10101010

Get next instruction from X if GT = 1Get next instruction from X if GT = 1JUMPGT XJUMPGT X10011001

Get next instruction from memory Get next instruction from memory
location Xlocation X

JUMP XJUMP X10001000
MeaningMeaningOperationOperationBinary Binary opcodeopcode

7

Simple examplesSimple examples

Practice problem 1, p. 213: set Practice problem 1, p. 213: set aa to the value to the value
b+c+db+c+d
Practice problem 2, p. 213: if (a = b), set Practice problem 2, p. 213: if (a = b), set cc to the to the
value of value of dd

Note different use of equals in the book Note different use of equals in the book –– we mean we mean
equality here, not assignmentequality here, not assignment

LetLet’’s assume s assume aa is at memory location 100, is at memory location 100, bb is at is at
101, 101, cc at 102, at 102, dd at 103, and that the code starts at at 103, and that the code starts at
memory location 50memory location 50

The Future: NonThe Future: Non--Von Neumann Von Neumann
ArchitecturesArchitectures

Physical limitations on speed of Von Neumann Physical limitations on speed of Von Neumann
computerscomputers
NonNon--Von Neumann architectures explored to bypass Von Neumann architectures explored to bypass
these limitationsthese limitations
Parallel computing architectures can provide Parallel computing architectures can provide
improvements: multiple operations occur at the same improvements: multiple operations occur at the same
timetime

SIMD instructions: apply single instruction to a vector of SIMD instructions: apply single instruction to a vector of
datadata
MIMD instructions: essentially multiple closely coordinated MIMD instructions: essentially multiple closely coordinated
processors in parallelprocessors in parallel
HyperthreadingHyperthreading, dual, dual--core processorscore processors

Segue/next timeSegue/next time

Start thinking about memory and object Start thinking about memory and object
management in Javamanagement in Java
Chapter 3 of Lewis/Loftus covers how to use Chapter 3 of Lewis/Loftus covers how to use
existing classes and object in Javaexisting classes and object in Java
Chapter 4 will cover how to make Chapter 4 will cover how to make our ownour own classes classes
in greater detailin greater detail
Memory architecture weMemory architecture we’’ve just discussed will ve just discussed will
help visualize how objects workhelp visualize how objects work

