CS1004: Intro to CS in
Java, Spring 2005
Lecture #8: GUIS, logic design

Janak J Parekh
janak@cs.columbia.edu

Administrivia

m HW#2 out
m New TAs, changed office hours

How to create an Applet

m Your class must extend the Appl et class
m This makes use of inheritance (Chapter 8)
® You don’t need to know how this works in order to
write applets
m Next, embed the applet into an HTML file using
a tag that references the class file of the applet
m View the HTML file using a web browser or
appletviewer
m The web browser can automatically download the
.class file like an image

HelloWorldApplet.java

i nport javax.sw ng. JAppl et;
inport java.aw.*;

public class Hell oWrl dAppl et extends JApplet {
public void paint(G aphics page) {
page. drawString(“Hell o world”, 100, 100);
}

}

HelloWorldApplet.html

<htm >
<head><title>Hell o Wrld!</title></head>
<body>
<appl et code="Hel | oWor | dAppl et . cl ass"
wi dt h=600 hei ght =400>
</ appl et >
</ body>
</htnl >

Drawing Shapes

m The G aphi cs class has lots more primitives,

including shape drawing
m Let’s look at the Java API again

® http://java.sun.com/j2se/1.5.0/docs/api/java/awt/Graphics.html

m Many shapes can be filled or unfilled

m The method parameters usually specify
coordinates and sizes

m Shapes with curves, like an oval, are usually
drawn by specifying the shape’s bounding rectangle

m An arc can be thought of as a section of an oval

Drawing a Line

10 150 X

20 f----

45

page.drawLine (10, 20, 150, 45);
or
page.drawLine (150, 45, 10, 20);

Drawing a Rectangle

50 X

20

40

100

Y
page.drawRect (50, 20, 100, 40);
Drawing an Oval
175 X
20 /\
80
bounding U
rectangle
Y 50

page.drawOval (175, 20, 50, 80);

Drawing Shapes

m BEvery drawing surface has a background color
m Your applet is one surface; for multiple
backgrounds, use filled rectangles
m Every graphics context has a current foregronnd
color
m Which you can change as the program goes on; like
picking up a different crayon
m setBackground(...) and page.setColox(...)
m Let’s look at the book’s applet (page 103)

Segue

m Back to computer hardware basics
m We'll pick up with more Java next time

m The stuff we covered up until now is what you
need for HW#2

Boolean Logic

m Apart from storage, what does a computer do?
m Low-level manipulations consist of boolean
logic — i.c., operations on true/false values
m True/false maps easily onto bistable environment
= Boolean logic operations on electronic signals
may be built out of transistors and other
electronic devices
m Goal: build computing logic out of these
m Imagine a simple “elevator controller”

Boolean operations

m 2 AND b
m True only when a is true and b is true
m 2aORb
m True when either a is true ot b is true, ot both are true
m English “or” is #ot OR (it’s XOR)
m NOT a
m True when a is false, and vice versa
m And every more complex operation is built out of these
three

Boolean Logic (continued)

m Boolean expressions

m Constructed by combining together Boolean
operations

® (2 AND b) OR (NOT b) AND (NOT a))
w Truth tables capture the output/value of a
Boolean expression
m A column for each input plus the output

m A row for each combination of input values

Boolean Logic (continued)

= Example:
(a AND b) OR (NOT b) and (NOT a))

a b Value
0 0 1
0 1 0
1 0 0
1 1 1
Gates
m Gates
m Since logic so common, we design hardware to do this
= AND gate

= Two input lines, one output line
m Outputs a 1 when both inputs are 1
m OR gate
= Two input lines, one output line
m Outputs a 1 when ezzher input is 1
m NOT gate
m One input line, one output line
m Outputs a 1 when input is 0 and vice versa

AND gate OR gate MNOT gate

bl ® —o-b + —a+b a— —a

The Three Basic Gates and Their Symbols

(see pages 156-157 for implementation)

Big picture

m Abstraction in hardware design
m Map hardware devices to Boolean logic

m Design more complex devices in zers of logic, not
electronics

m Conversion from logic to hardware design may be
automated
m A cireuit is a realized collection of logic gates
m Transforms a set of binary inputs into a set of binary
outputs
m Values of the outputs depend only on the current
values of the inputs

Input-] ————» —— Output-1

Input-2 ———» ——— Cutput-2

Input-3 ———» Circuit C —— Cutput-3

Input-m ———» —— Output-n
m inputs n oulpuls

Diagram of a Typical Computer Circuit

A Circuit Construction Algorithm

m Sum-of-products algorithm
m Truth table captures every input/output possible for
circuit
m Repeat process for each output line
m Build a Boolean expression using AND and NOT for
each 1 of the output line
m Combine together all the expressions with ORs

m Build circuit from whole Boolean expression

Two major kinds of circuits

= Computation circuits

m Take two bits of data and combine them in some
fashion

m Control circuits

m Determine which computation circuits or data bits
to use

A few examples of
computation circuits

1-bit equality
m Two inputs, one output
m z-bit equality
m Composed of many 1-bit equality circuits ANDed together
1-bit adder
m Three inputs, two outputs
#n-bit adder
m Composed of many 1-bit adders chained together
m Let’s do these on the board
m Pages 165-172

Next time

= Continue computer architecture

m Start Java OO concepts

