CS1004: Intro to CS in
Java, Spring 2005
Lecture #5: Java basics, data representation

Janak J Parekh
janak@cs.columbia.edu

Administrivia

= T'wo more TAs
m HW#1 due next Tuesday

m Submission instructions up
m Read the webboard!
m By the way, I update the slides after class

m Usually truncate material that we didn’t get to

Agenda

m Finish Java introduction
m Brief discussion on software development

m Introduce memory representation in computers

Identifiers

m Sometimes we choose identifiers ourselves when
writing a program (such as Hel | oWor | d)

m Sometimes we ate using another programmet's
code, so we use the identifiers that he or she
chose (such as pri ntln)

m Often we use special identifiers called reserved
words that already have a predefined meaning in
the language

m A reserved word cannot be used in any other
way

Reserved words

m The Java reserved words:

abstract else interface switch
assert enum long synchronized
boolean extends native this
break false new throw
byte final null throws
case Finally package transient
catch float private true

char for protected try

class goto public void
const if return volatile
continue implements short while
default import static

do instanceof strictfp

double int super

Whitespace

m Spaces, blank lines, and tabs are called whitespace

m White space is used to separate words and
symbols in a program

m Extra white space is ignored

m A valid Java program can be formatted many
ways

m Programs should be formatted to enhance
readability, using consistent indentation

m Emacs helps you to automatically enforce this

Program development revisited

m The mechanics of developing a program include
several activities
m writing the program in a specific programming
language (such as Java)
m translating (compiling) the program into a form that
the computer can execute
m investigating and fixing various types of errors that

can occur

m Software tools are used throughout this process

Running code

m The microprocessor (CPU) of a computer is its
“heart”, and is responsible for running code, but
it doesn’t understand Java directly

m Instead, each type of CPU has its own specific
machine language (“instruction set architecture”)

m Comparatively primitive — like a fast, sophisticated
scientific calculator
m Intel/AMD processors use the x86 IS4

m Mac computers use G4/G5 processors with a
PowerPC ISA

Language levels

m There are four programming language levels:
m machine language
m assembly language
m “Shorthand” for machine language
m high-level language (i.c., Java, C, C++)
m fourth-generation language (SQL, others)
m Levels were created to make it easier for a human being
to read and write programs
m We'll see examples of machine code and assembly next
week

Compiler

m A program must be translated into machine
language before it can be executed

m A compileris a software tool which translates
higher-level source code into a specific target
language

m Often, that target language is the actual machine

language for a particular CPU type
m C, C++ do this
m The Java approach is somewhat different

Java “translation”

m The Java compiler (javac) translates Java source
code into a special representation called byzecode
m Bytecode is #ot the machine language for any
traditional CPU, although it’s somewhat similar
m Another software tool, called an inzerpreter,
translates bytecode into machine language and
executes it “on the fly”
m It’s actually recompiling the bytecode into machine
language as you run the program via the java tool

Why so complex?

m Compiled Java code is not tied to any particular
machine

m In other words, you can compile a program, give
someone the .class file, and they can run it without
having to worry about compilation, on one of many
different types of computers

m Java is considered to be architecture-nentral

m Not the case with C/C++; you need to recompile the
original code for every possible machine, and different
machines may behave a little differently

Syntax vs. semantics

m The syntax rules of a language define how we can
put together symbols, reserved words, and
identifiers to make a valid program

m In English, we call this grammar: sentence structure,
punctuation, etc.

m The semantics of a program statement define
what that statement means (its purpose or role
in a program)

m What does the sentence actually zean?

Why do we care?

m A program that is syntactically correct is not
necessarily logically (semantically) correct

m A program will always do what we tell it to do,
not what we meant to tell it to do

m Example: a program to pack soda cans into
crates
m Given # cans, we need 7/6 crates.
mint nCrates = nunCans / 6;
m This is syntactically correct, but may have semantic

flaws

Errors

m A program can have three types of errors

m The compiler will find syntax errors and other basic
problems (compile-time errors)

m If compile-time errors exist, the executable bytecode is not
generated

m A problem can occur during program execution, such
as divide-by-zero, which causes a program to terminate
abnormally (run-time errors)

m A program may run, but produce incorrect results,
perhaps using an incorrect formula (logical errors)

m Semantic errors consist of bozh run-time and logical
errors

Basic Program Development “Cycle”

Edit and
save program

syntax
errors
run-

. time,
Compile program logic

\ errors

Execute program and
evaluate results

Problem Solving

m Solving a problem consists of multiple activities:
m Understand the problem

m Design a solution (algorithm)

m Consider alternatives and refine the solution

m Implement the solution (program)
m Test the solution

m These activities are not purely linear — they
overlap and interact

Problem Solving

m The key to designing a solution is breaking it
down into manageable pieces
m When writing software, we design separate
pieces that are responsible for certain patts of
the solution

w An object-oriented approach lends itself to this kind
of solution decomposition

m Picces called obyects and classes

What is OOP?

m Java is an object-oriented programming language
m As the term implies, an object is a fundamental
entity in a Java program
m Often translate to “real” entities, e.g., an Employee
object

m Hach Employee object handles the processing and
data management related to that employee

Objects

m An object has:
m sfate - descriptive characteristics (storage)
w Jehaviors - what it can do (algorithms)
m The state of a bank account includes its account
number and its current balance
m The behaviors associated with a bank account include
the ability to make deposits and withdrawals
m Note that the behavior of an object might change its
state

Classes

m An object is defined by a class
m “Blueprint” of an object
m The class uses wethods to define the behaviors of the
object
m The class that contains the main method of a Java
program “represents” the entire program
m A class represents a concept, and an object represents
the embodiment of that concept
m John, Jane, Mary (objects) are Employees (c/ass)
m Multiple objects can be created from the same class

Objects and Classes

John : Employee
Salary = 100000

+GrantRaise()

Jane : Employee
Salary = 50000

Mary : Employee
Salary = 150000

Inheritance
One class can be
used to detive
another via _
inberitance *

Classes can be

organized into

worarchi — N B O

hierarchies S S Eas .

> A A

Don’t confuse

NS

this with objects!

We'll think more I . — E—
A N B .

about this later;
don’t worry too
much about it for
now

How is all this stuff stored, anyway?

m A computer’s internal storage techniques are
different from the way people represent
information in daily lives

m Information inside a digital computer is stored
as a collection of binary data

m Bverything is stored as Os and 1s ultimately
m Convention
m We call any individual 0 or 1 a bit

m A byte can vary, but most computers today equate 8 bits to
one byte

Why binary!?

Electronic devices are most reliable in a bistable
environment
Bistable environment

m Distinguishing only two electronic states: current flowing or
not, or direction of flow

Computers are bistable: hence binary representations
It is theoretically possible to build base-10 computers,
but less stable

m Different voltages for each value (analog cassettes?)

m Risk of degradation over time

So how do we store it?

Direction of magnesi fisld Direction of magnesic fisld

|

Fermic
=~ ouide

Direction of current - Direction of current <
Binary 0 Binary 1

Using Magnetic Cores to Represent Binary Values

In [Collector)
h
(Base] Control .
Transistor
Switch
Qut (Emitter)
Y

Transistors (usually designed as semiconductors):

use a control to turn on and off flow, i.e., really tiny switches

Representing numbers

m Decimal numbering system
m Base-10

m Fach position is a power of 10
3052=3x103+0x 10>+ 5x 10" + 2x 10°

m Binary numbering system
m Base-2
m Built from ones and zeros

m Hach position is a power of 2
1101 =1x2°+1x22+0x2' +1x2°

BINARY DEeciMa Binary DECIMAL

0 0 10000 16

1 1 10001 17

10 2 10010 18
11 3 10011 19
100 4 10100 20
101 5 10101 21
110 6 10110 22
111 7 10111 23
1000 8 11000 24
1001 9 11001 25
1010 10 11010 26
1011 11 11011 27
1100 12 11100 28
1101 13 11101 29
1110 14 11110 30
111 15 11111 31

Representing numbers (II)

m Representing integers
m Decimal integers are converted to binary integers
m Given k bits, the largest #nsigned integer is
2k-1
m Given 4 bits, the largest is 241 = 15
m Java obviously supports larger than 4-bit numbers
m Signed integers must also represent the sign (positive
or negative)
m One bit is then used for the sign itself
m Negative zero?

10

Representing numbers (IIT)

m Representing real numbers
m First, convert into binary numbers
m A little trickier than it first seems: to the right, each bit
represents 2, V4, 1/8, etc.
m575="7
m Next, put into binary scientific notation: a x 2P
m101.11x2°
m Normalize so that first significant digit is
immediately to the right of the binary point
= 10111 x 23
m Mantissa and exponent (and signs) then stored
m What's the ultimate result?

Next time

m Finish data representation
m Manipulating data in Java

m Start working on HW1 if you haven’t already!

11

