COMS W1114 - Java Lab

Lab 10
Wednesday, April 7, 2004
&

Thursday, April 8, 2004

Note

*Plagiarism policy

the textbook, the

Moreawer, o

Invariably, terefore, they get

Some Definitions

this identifier

— every object can access all of its members by name. The full name of
the identifier is t hi s. name

— The use of t hi s is only needed when there is ambiguity over variable
names in a particular scope

overloading a method - where you provide different versions of a method,
but keep the same name. The parameter list (input) for the two methods
must be distinct so that there is no confusion about which is being called:

publ i ¢ void i thdraw(String bal ance, int doubl e){
I1do stutf here

)
Publ i ¢ void wi thdraw(S ring bal ance, String doubl e)(
i thdraw bal ance, Doubl e. par seCoubl e(doubl ¢))

i
Publ i ¢ void wi thdraw(Sri ng bal ance) {
i thdraw bal ance. 60.0):

)

overriding methods — a subclass can decide to supply its own version of a
method already supplied.

— All of the classes we create are a subclass of the Object Class in Java

3-

Object Class Methods

« equals
. @ is o
« toString
. e J—
i @ n
i o
Comirncier Summnary

More Definitions

« instanceof

— The instanceof operator tests whether its first operand is an
instance of its second. boolean val = op1 instanceof op2
opl must be the name of an object and op2 must be the
name of a class. An object is considered to be an instance
of a class if that object directly or indirectly descends
from that class.

Program from last lab...

public class Plotter {
final Point origin

w POl 0L(0,0); 11 a constant

puslic static v

PLgEIX)+ * y="+ pLgev()

p2 "+
1(“Distance between p1 and p2: *+p. distance(p2))

nt(p2)
M point_betveen p1 and p2: "+ 1p12); I/ note overidden toSiring
Jieotate the mdpoi nt

System out.pri ntIn(* 12 after fotateso™s M1z)

I7are the midpoin and pl equal nows

Syatem out pr nLin(-pL e 127 -t eaual s(mp1z))

Irete.

)

)
3 points created in this Plotter program, each of which have their own ‘copy” of the member (global) variables

2 mp12
x=0,y=0 x=2,y=2

Questions

« how could we use instanceof operator here?
— mpl2 instanceof Point
— mpl2 instanceof Object

Inheritance

— An object is considered to be an instance of a class if that object
directly or indirectly descends from that class.

— descent?!
— so far, we have created classes with no hierarchy between them:
« remember:

superclass — FlaiEEn
of Instructor
ubclasses of Person.

\Instructor\ \Student “Decends” from Persol
8-

Inheritance Example

class Person {
protected String name; /1 aprotected variabl e can be accessed OMLY
protected int age; /1 fromthis class and the classes descend from this class..

public Person(String n, int age){
me =n

this.age = age:

}

public String tostring(){
return nane;

}

class Student extends Person { 1/since student extends Person, student inherits all the properties that Person had
private int student!D;
private double GPA
public Student(String n, int a, int id, double gpa){
SUPEr (N,)7 /1 va are call g (ho suprclass contructor WBT B TE FIRST LINE CF 0. this 15 cllod
F2uper onsiruct: g

student I D=i d;
@PA = gpa;

}
public String toStrint(){

return “Student: * + name; //name refers to the PROTECTED Person variable
}

}

Some questions

« Review of modifiers
— public
— protected
— private

« how could we use instanceof operator here?
Person p = new Person(“Maryani, 23);
—p instanceof Person ?
—p instanceof Student ?

Student s = new Student (“Jack”, 19,
223344, 3.7);

—s instanceof Person ?

— s instanceof Student ?
-10-

Casting examples using
inheritance properties

« any object of a superclass can be assigned to a subclass with a
cast!

— Person p = new Person(“Maryanf, 23);
— Student s = (Student) pP; e o oo stusen s are

currently null11

« any object of a subclass can be assigned to an object of its
superclass!

— Student s = new Student(“Brit”, 22,
6655, 2.7);

— Person p = s;

Static

« astatic variable

— amember (global) variable which exists only ONCE even though there
may be multiple objects created.

— good for when you want to collect information about an entire class (vs.
a single object) such as

« static int students_created;
« Student.students_created; €< access it from the class, not the object!
 astatic method
— not part of the a specific object, part of the general class
— main method must be static. no other methods should be declared static
— you can never access an object’s main() from another object.

