
1

1 Introduction to Computer Science
W 1113 – Lab (C)

Lab1
Suhit Gupta
1/29/04

2 Rules
z I will call on you
z You will learn a lot, I can assure you

– Do the reading
– Attendance is VERY important, pseudo mandatory

z Email me if you have any questions
z I am going to teach this as if it were a small group

– You and I will get to know each other
– Interrupt me, don’t let me proceed unless you understand everything
– Speak loudly

z No sleeping in the lab ☺
z Turn cell phones off

3 Books
z The two books I will use (yeah I know you weren’t assigned them both)

4 Introduction to C
z Created by Dennis Ritchie in 1972
z Kernighan and Ritchie, wrote the canonical book

5 Compile and Run
z Basic compile and run

– gcc <filename.c>
– Therefore to run…

z Advanced options
– gcc <filename.c> -o blah
– Therefore to run…

z Makefile (and make)
– What is it?

6 Structure of program
#include <stdio.h>
int main (void) {

printf(“Hello World!\n”);
return 0;

}

7 Structure of program
#include <stdio.h>
int main (void) {

printf(“Hello World!\n”);
return 0;

}

z Pre-processing directive
z Angle brackets mean that the file is found in the usual place

8 Structure of program

2

#include <stdio.h>
int main (void) {

printf(“Hello World!\n”);
return 0;

}

z Main function
z (void)
z Int over here means…
z {

9 Structure of program
#include <stdio.h>
int main (void) {

printf(“Hello World!\n”);
return 0;

}

z printf
z Hello World
z “…”
z ;

10 Structure of program
#include <stdio.h>
int main (void) {

printf(“Hello World!\n”);
return 0;

}

z Return
z 0

11 Structure of program
#include <stdio.h>
int main (void) {

printf(“Hello World!\n”);
return 0;

}

z End of program or the function

12 Comments
z //
z /* … */

13 Variables
#include <stdio.h>

int main (void) {
int inches, feet, fathoms;

fathoms = 7;
feet = 6 * fathoms;
inches = 12 * feet;
printf(“Wreck of the Hesperus:\n”);
printf(“Its depth at sea in different units:\n);
printf(“ %d fathoms\n”, fathoms);
printf(“ %d feet\n”, feet);
printf(“ %d inches\n”, inches);

3

return 0;
}

14 Variables II
#include <stdio.h>

int main (void) {
char c;

c = ‘A’;
printf(“ %c rocks\n”, c);
return 0;

}

15 Variables III
z Declare at the beginning of the program
z Name them intelligently
z Remember to assign values

16 I/O - output
z printf
z Special constructs like \n and \t

– Also use \ to ignore next character (\\, \’)
z %d, %c, etc.

17 Data types
z int
z char
z float
z string – next time

18 Miscellaneous
z #include <…>
z #include “filename”
z #define

– Anywhere in the program

19 Assignment
z Type into cunix

– man gcc
z Read Ch. 1-4 of Practical C Programming

1

1 Introduction to Computer Science
W 1113 – Lab (C)

Lab2
Suhit Gupta
2/5/04

2 Questions about the previous lab
3 Questions about HW1 (or HW0)
4 Who did man gcc?

Tell me something interesting about it…

5 Recap
Intro to Unix, Hardware, Server-Client relationships, concept behind telnet
Intro to C
Basic structure of a program
Compiling and running programs
Variables, and assigning values to them
Data types and I/O
\

6 I/O
Output in more detail

printf(“%s %c %f %c%c\n”, “one”, 2, 3.33, ‘G’, ‘o’);
%3c – field width
%7.2f
HW1?

7 I/O
Input

scanf – analogous to printf
scanf(“%d”, &x);
You can scan in different types of data from files, user input or command line
parameters.

8 Conversion between data types
atoi
atof
atol

Usage -> a = atoi(b)
– Here the value of b is converted from string to integer.

9 Command line parameters
argv & argc
./a.out 2 3 (to add two numbers)

2

int argc, char *argv[]

#include <stdio.h>

int main (int argc, char *argv[]) {
int a, b;
a = atoi(argv[1]);
b = atoi(argv[2]);
… //do things with a and b

}

10 Math operators
+, -, *, /
&
|

11 Arrays
What are arrays?

12 Method calls
What are methods?

13 Assignment
Read Ch. 5 and start Ch. 6 from the Practical C Programming book
Read pg. 200-206 from the Practical C Programming book
man gcc

HW1

1

1 Introduction to Computer Science
W 1113 – Lab (C)

Lab3
Suhit Gupta
2/12/04

2 Questions about the previous lab
3 Questions about HW1 (or HW0)
4 HW1 submit instructions
5 Recap from Lab 1

Intro to Unix, Hardware, Server-Client relationships, concept behind telnet
Intro to C
Basic structure of a program
Compiling and running programs
Variables, and assigning values to them
Data types and I/O
\

6 Recap from Lab 2
Details on printf
Details on scanf
Conversion between data types
Math operators
Command Line Parameters

7 Math ops continued
+, -, *, /, %
++, --
+=, -=, *=, /=

8 Other symbols
<, >, <<, >>,
!, !=
&, &&, |, ||
#
(), {}, []

9 Arrays
What are arrays?

– Arrays are sets of consecutive memory locations used to store data
Typical array declaration

– int data_list[3];
– data_list[0], data_list[1], data_list[2]
– Dimensionality
– What is the index?
– You can also initialize by doing the following

int data_list[3] = {1.0, 2.0, 3.0);

2

10 Code sample
#include <stdio.h>
#define N 5

int main (void) {
float a[N], total, average;

a[0] = 34.0;
a[1] = 27.0;
a[2] = 45.0;
a[3] = 82.0;
a[4] = 22.0;

total = a[0] + a[1] + a[2] + a[3] + a[4];
average = total/5.0;
printf(“Total is %f and Average is %f\n”, total, average);
return(0);

}

//run array.c

11 Multidimensional arrays
int matrix [2][3];
Now you assign and reference by saying

– matrix [0][0];
– matrix [0][1];
– matrix [0][2];
– matrix [1][0];
– matrix [1][1];
– matrix [1][2];

12 Strings
Sequence of chars (an array of characters)

#include <stdio.h>

int main (void) {
char name[6];

name = “Suhit”;

printf(“My name is %s\n”, name);
return(0);

}

13 Strings
Sequence of chars (an array of characters)

#include <stdio.h>

int main (void) {
char name[6];

name = “Suhit”; // This is wrong

printf(“My name is %s\n”, name);
return(0);

}

14 Strings II
#include <stdio.h>

int main (void) {
char name[6];

name[0] = ‘S’;
name[1] = ‘u’;
name[2] = ‘h’;
name[3] = ‘i’;
name[4] = ‘t’;
name[5] = ‘\0’; //adding a null character at the end of the string

3

printf(“My name is %s\n”, name);
return(0);

}

15 Strings III
#include <string.h>

– to include special string manipulation thingies
strcpy
strcmp
strlen
strcat
strtok

16 Strings IV
#include <stdio.h>
#include <string.h>

int main (void) {
char name[6];
//one character at the end is stored for null
strcpy(name, “Suhit”);

printf(“My name is %s\n”, name);
return(0);

}

17 Strings V
#include <stdio.h>
#include <string.h>

int main (void) {
char name[60];
/* last character is still reserved for null, store at most 59 characters */
strcpy(name, “Suhit”);

printf(“My name is %s\n”, name);
return(0);

}

18 Strings VI
#include <stdio.h>
#include <string.h>

char first_name [100];
char last_name [100];
char full_name [200];

int main (void) {
strcpy(first_name, “Suhit”);
strcpy(last_name, “Gupta”);

strcpy(fullname, first_name);
strcat(fullname, “ ”);
strcat(fullname, last_name);

printf(“My full name is %s\n”, full_name);
return(0);

}

//run strings.c

19 Strings VII – Reading Strings
fgets(name, sizeof(name), stdin);

– name is the name of the character array
– sizeof tells the program how much to read
– stdin – keyboard

#include <stdio.h>
#include <string.h>

char line [100];

4

int main () {
printf(“Enter a line: ”);;

fgets(line, sizeof(line), stdin);

printf(“The length of the line is %d\n", strlen(line));
return(0);

}

//Run strings2.c

20 Strings VIII
fgets has last character as end-of-line (newline)
Some people will munge the last newline char by doing the following

– line[strlen(line)-1)] = ‘\0’
Then use sscanf – like scanf, but used to scan strings

– Usage : sscanf(name, format, &var1, &var2, …);
– Why not use atoi?

Because you scan in different types of values and format them into different types of vals.
sscanf(in_string, “%d%d%d%s”, &a, &b, &c, tmp);

21 BTW…
In Ch. 5, read about different data types, like different types of int, types of float.
Also read about hexadecimal and octal
We will cover this in depth as the course goes on

22 Loops and conditionals
if

– need to know <, >, ==, !=
– usage: if (expr) {stmt…}

else if (expr) {stmt…}
else {stmt}

while
– usage: while (cond) {stmt…}
– break;

23 Next time…
Iteration/loops

– While
– For
– Do while

Conditional statements
– If
– Switch

Methods and method calls
– Variable scope
– Return values

24 Assignment
Read Ch. 6 from the Practical C Programming book

HW1

1

1 Introduction to Computer Science
W 1113 – Lab (C)

Lab4
Suhit Gupta
2/19/04

2 Questions about the previous lab
3 Questions about HW2 (or HW1 or HW0)

z Or submit instructions?

4 Recap from Lab 2
z Details on printf
z Details on scanf
z Conversion between data types
z Math operators
z Command Line Parameters

5 Recap from Lab 3
z Math operators
z Arrays (assignment and reference)
z Strings

– string manipulation
– fgets
– sscanf

6 Quick quiz…
z BTW, I will be asking one (or two) questions every class that are in the reading

only… brownie points ☺

z +=, -=, *=, /=
– What do these do?

7 Function prototypes
z Usually, you declare variables before you can use them

– similar with functions
– however, you can

z declare a function prototype at the beginning of the program
z define the actual function workings later on

z Example
– int add (int a, int b);

z This will be important in HW2

8 Function prototypes - code
#include <stdio.h>

int add (int a, int b);

int main() {
int c;
c=add(2, 3);
printf(“The total of 2 and 3 is %d\n”, c);

}

int add (int first_number, int second_number) {

2

int total;

total = first_number + second_number;
return total;

}

9 Function prototypes – code II
#include <stdio.h>

int add (int a, int b);

int main(int argc, char *argv[]) {
int c, x, y;
x=atoi(argv[1]);
y=atoi(argv[2]);
c=add(x, y);
printf(“The total of %d and %d is %d\n”, x, y, c);

}

int add (int first_number, int second_number) {
int total;

total = first_number + second_number;
return total;

}

10 BTW (a couple of comments about comments and style)
z Use comments
z Use tabs to write code cleanly
z Identify yourself as the author
z Placement of {}

11 Conditionals
z Conditional statements

– if
– switch

12 Conditionals
z Conditional statements

– if
z need to know <, >, ==, !=
z usage: if (expr) {stmt…}

else if (expr) {stmt…}
else {stmt}

z when do you not need {}
– if followed by another if

if (something) do something;
if (something else) do something else;

– The default case is the final else
– Correctness

z if (strcmp(string1, string2)) do something?
z if (strcmp(string1, string2)==0) do something?

13 Conditionals II
z Switch

switch (val) {
case 1:
do some work;
break;
case 2:
do some work; // you don’t have to necessarily have
break; // stuff here
case 3:
do some work;
break;
default: //if needed
do some work;
break;

}
z What is the break statement?
z What happens if you don’t use break?

14 Goto and the evils of it…
z DON’T USE GOTO
z What is GOTO

3

z Why is it a problem?

15 Loops
z Iteration/loops

– While
– For
– Do while

z Difference between conditionals and loops

16 Loops II
z While

– usage:
z while (cond) {stmt…}

– break;
– continue;

z code
while(current_number<100) {

do something; //what is wrong
}

17 Loops II
z While

– usage:
z while (cond) {stmt…}

– break;
– continue;

z code
while(current_number<100) {

do something; //what is wrong
i++; // or i-- as the case may be

}

18 Loops III
z Do while

– usage:
do {

blah;
} while (i>0);

– Again, remember that the value of ‘i’ needs to be changed

19 Loops IV
z For

– usage:
z for (… ; … ; …) {

do something here;
}

– There is other acceptable syntax (sort of)
z BTW, this is where the ++i and i++ becomes relevant and useful
z Everything in for can be done in a while

– Think about it

20 Loops V
z The comma operator

– Things are evaluated from left to right
z for (sum=0, i=1; i<=n; ++i)

sum += i;
z for (sum=0, i=1; i<=n; sum += i, ++i)

;
z for (sum=0, i=1; i<=n; ++i, sum += i)

4

; // this may give wrong results as i is
// incremented before added to sum

21 Loops VI
z Why can we use the ; just like that
z Infinite loops – beware

– while (1) { …}
– for (; ;) {…}

z Use it at your own risk (system administrator may kill ;-))
z Use it instead of running your program again and again

22 What does the following do?
for (i = 1; i <= 10; ++i)

;
sum += i;

23 Assignment
z Read Ch. 6 from the Practical C Programming book

z HW2
– Don’t wait till the last minute, seriously.

1

1 Introduction to Computer Science
W 1113 – Lab (C)

Lab5
Suhit Gupta
2/26/04

2 Questions about the previous lab
3 Questions about HW2
4 Recap from Lab 3

Math operators
Arrays (assignment and reference)
Strings

– string manipulation
– fgets
– sscanf

5 Recap from Lab 4
Function prototypes
Conditional statements

– if
– switch

Loops
– while
– do while
– for

6 Quick quiz…
What does the following do in a for loop

– && or ||
What are double and long?

7 Function prototypes revisited
Usually, you declare variables before you can use them

– similar with functions
– however, you can

declare a function prototype at the beginning of the program
define the actual function workings later on

Example
– int add (int a, int b);

This is important in HW2

8 Function prototypes – code I
#include <stdio.h>

int add (int first_number, int second_number) {
int total;

total = first_number + second_number;
return total;

}

int main(int argc, char *argv[]) {
int c, x, y;
x=atoi(argv[1]);

2

y=atoi(argv[2]);
c=add(x, y);
printf(“The total of %d and %d is %d\n”, x, y, c);

}

9 Function prototypes – code II
#include <stdio.h>

int add (int a, int b);

int main(int argc, char *argv[]) {
int c, x, y;
x=atoi(argv[1]);
y=atoi(argv[2]);
c=add(x, y);
printf(“The total of %d and %d is %d\n”, x, y, c);

}

int add (int first_number, int second_number) {
int total;

total = first_number + second_number;
return total;

}

10 Some more examples
#include <stdio.h>

//defining all my function prototypes
int add (int a, int b);
int minus (int a, int b);
int mult (int a, int b);
float div (int a, int b);

int main(int argc, char *argv[]) {
//defining all my variables
int addanswer, minusanswer, multanswer, x, y;
float divanswer;
//reading in all the input
x=atoi(argv[1]);
y=atoi(argv[2]);
//performing calculations and printing the result
addanswer=add(x, y);
minusanswer=minus(x,y);
multanswer=mult(x,y);
divanswer=div(x,y);
printf("The respective calculations of %d and %d are %d, %d, %d and %f\n", x, y, addanswer,

minusanswer, multanswer, divanswer);
}

//The add function
int add (int first_number, int second_number) {

int total;

total = first_number + second_number;
return total;

}

//The subtraction function
int minus (int first_number, int second_number) {

int total;

total = first_number - second_number;
return total;

}

//The multiplication function
int mult (int first_number, int second_number) {

int total;

total = first_number * second_number;
return total;

}

//The division function - note that this one returns a float
float div (int first_number, int second_number) {

float total;

total = (float) first_number / (float) second_number;
return total;

}

11 Here is a problem – use functions
Brainstorming (real world example)

– Planning your trip to Europe
– Changing currency during your Eurotrip
– Booking Flights
– Booking Hotel Room and/or Youth Hostels
– Sightseeing
– Look up the weather

What are the different methods?

12 Conditionals revisited
Conditional statements

– if
– switch

13 Conditionals
Conditional statements

– if
need to know <, >, ==, !=, <=, >=
&&, ||
usage: if (expr) {stmt…}

else if (expr) {stmt…}
else {stmt}

when do you not need {}
– if followed by another if

if (something) do something;
if (something else) do something else;

– The default case is the final else
– Correctness

if (strcmp(string1, string2)) do something?

3

if (strcmp(string1, string2)==0) do something?

14 Conditionals II
Switch

switch (val) {
case 1:
do some work;
break;
case 2:
do some work; // you don’t have to necessarily have
break; // stuff here
case 3:
do some work;
break;
default: //if needed
do some work;
break;

}
What is the break statement?
What happens if you don’t use break?

15 Loops
Iteration/loops

– While
– For
– Do while

Difference between conditionals and loops

16 Loops II
While

– usage:
while (cond) {stmt…}

– break;
– continue;

code
while(current_number<100) {

do something; //what is wrong
}

17 Loops II
While

– usage:
while (cond) {stmt…}

– break;
– continue;

code
while(current_number<100) {

do something; //what is wrong
i++; // or i-- as the case may be

}

18 Loops III
Do while

– usage:
do {

blah;
} while (i>0);

– Again, remember that the value of ‘i’ needs to be changed

19 Loops IV
For

– usage:
for (initial statement ; condition ; iteration statement) {

do something here;
}

4

– There is other acceptable syntax (sort of)
BTW, this is where the ++i and i++ becomes relevant and useful
Everything in for can be done in a while

– Think about it

20 Loops V
The comma operator

– Things are evaluated from left to right
for (sum=0, i=1; i<=n; ++i)

sum += i;
for (sum=0, i=1; i<=n; sum += i, ++i)

;
for (sum=0, i=1; i<=n; ++i, sum += i)

; // this may give wrong results as i is
// incremented before added to sum

21 Loops VI
Why can we use the ; just like that
Infinite loops – beware

– while (1) { …}
– for (; ;) {…}

Use it at your own risk (system administrator may kill ;-))
Use it instead of running your program again and again

22 What does the following do?
for (i = 1; i <= 10; ++i)

;
sum += i;

23 Back to the Europe Trip example
Now that we know loops, how would we use them to call our methods nicely

24 Assignment
Read Ch. 8 and 9 from the Practical C Programming book
Start reading Ch. 7

HW2
– Due soon.

1

1 Introduction to Computer Science
W 1113 – Lab (C)

Lab 6
Janak J Parekh
3/3/04

2 Recap from Lab 5
Function prototypes
Functions
Conditionals
Loops

3 Agenda
Elements for HW#3

– Variable scoping
– Two-dimensional arrays

Good coding practices
Debugging
Midterm review…

4 Variable scope
Variables can be declared in different parts of your program, and this affects how they’re accessible
Global variables are declared outside any function
Local variables are declared inside a function, or any arbitrary code block
In C, local variables must be declared at the top of the block
The “closest” one in the same block takes precedence

5 Example
#include<stdio.h>
int i = 5;
int main(void) {

int i = 10;
{

int i = 12;
}
printf(“%d\n”, i);

}
Yes, this is legitimate syntax! What’s the answer?

6 A note on code blocks…
Be very careful in identifying code blocks; use { } and proper indentation to keep your code clear
If-else if-else: note that the latter two are optional, but should clearly correspond to the “original if” if
present… legitimate syntax:

if(a) {
if(b) { … }
else { … }

} else { … }

7 Why global variables?
If you have some piece of information used by lots of functions in the same program, no need
to pass them as variables if they’re already accessible
However, be careful not to make everything global
We’ll get more used to structuring data later in the semester…

2

8 Permanent vs. temporary variables
Book makes distinction – probably beyond the “scope” of this class
Modern computers have a much larger stack
Unless you’re doing very special stuff, don’t worry about it
static: The most confusing keyword in C, ever

9 Two-dimensional arrays
Easy to set up:

– int a[10][20];
– a[10][12] = 6;
– Might want to “zero out” the array initially… how?

Special meaning with strings
– char strs[10][20];
– You can treat this as a 2D array of chars, or as a 1D array of strings
– In the latter, how many strings, and how many chars in each?
– strcpy(strs[3], “Hello world”);

10 Good coding practices
Comment!
Proper variable, function naming

– In general, variables and functions have an initial lowercase, uppercase later
– int numRecords = 0;
– Indentation is very important, especially in keeping track of scope

emacs will help you in this
I’ve debugged people’s code just by indenting it!

11 Good coding practices (II)
Initial values for (most) variables

– int i = 0;
– int a[10] = { 0 };
– Especially important in C – no presumed default

Avoid very long functions: split up functionality
Avoid overly complex logic if possible

12 Debugging tips
gcc -Wall

– Compile with “all warnings”
– Often can catch errors this way
– Sometimes will return some “optional” errors

printf()
– When stuck, print out intermediate results as your program runs

13 Using a debugger
Especially with C code that crashes, it’s hard to tell why the C code crashed

– “Segmentation fault” isn’t a very good answer
– It’ll only get worse when we learn pointers

You can run your code through a debugger and see why it crashed
Let’s try a simple example…

14 Bad code
int main(void) {

char c;
strcpy(c, “This is a test”);

}
OK, this looks obvious here, but if you have a few hundred lines of code…
Not surprisingly, it crashes

3

15 gdb – the GNU debugger
First, compile your code with “-g”

– gcc -g -o test test.c
Then, run it with gdb

– gdb test
Common gdb commands

– run
– list – look at code
– bt – “backtrace” along the function call stack
– up/down – move among function call stack
– break – add a “breakpoint”

This is a whirlwind tour

16 gdb’s unfriendly?
Buy a commercial IDE
Or, try ddd, which is a graphical frontend to gdb

– Lots of features – I’ll only scratch the surface in my “tour”
You probably don’t need to use a debugger for HW#3, but it’ll be important for later
homeworks

17 Midterm review…
Any specific questions, first?
Let’s run through the slides

1

1 Introduction to Computer Science
W 1113 – Lab (C)

Lab7
Suhit Gupta
3/11/04

2 Questions about the previous lab
3 Questions about HW3
4 Recap from Lab 5

Basically a recap from Lab 4
Function prototypes
Conditional statements

– if
– switch

Loops
– while
– do while
– for

5 Recap from Lab 6
Code blocks
Global variable scoping
Two dimensional arrays

– arrays of strings
Debugging

6 Readme
Write a README file
Write a good README file
It doesn’t have to be overly verbose

7 Comments
Writing comments
Writing good comments
Often, naming variables well is a form of self-commenting code

8 Function prototypes
Who does not understand them?
Three types of submissions in HW2

– everything in main() {…}
– function before main, so you did not have to use function prototypes
– function after main, but lucky this time

9 Preprocessors
I already went over these two but here is a recap, and some more detail
#include

– /usr/include – stdio.h, stdlib.h, math.h, string.h, ctype.h, limits.h
– If you use include math.h, then you need a –lm at the end of your compile command

2

10 Preprocessors II
#define

– convention – in caps
– You can define macros as well
– #define FOO bar

– #define FOR_ALL for (i=0; i<ARRAY_SIZE; i++)
…
FOR_ALL {

data[i] = 0;
}

– #define SQR(x) ((x)*(x))
note the extra parentheses

Both define and include end at EOL, however, you can continue with a \

11 Preprocessors III
#ifdef (pg. 146) + #ifndef, #undef, #endif, #else

– Conditional compilation
#ifdef DEBUG

printf (“The code reaches this point\n”);
#endif

Now you can use #define DEBUG or
#undef DEBUG

12 Bit operators
~ (unary operator) – Not
| - Or
& - And
^ - Xor (exclusive or)

13 Shift operators
<< - Left shift

– Shifting left by 1 multiplies by 2
– Shifting left by 2 multiplies by 4, or 22

– Therefore, shifting left by n, multiplies by 2n

>> - Right shift (see Part II, Question 2, midterm)
– Right shift divides by 2

14 Debugging
“gcc –Wall <filename.c> will generate warnings
gdb

– gcc –Wall –g <filename.c>
ddd

– You run these two on a.out
– run, bt, breakpoint, skip, step, lots of commands
– step is good for loops

15 HW3 and Midterm questions…
If we have time.

16 Assignment
Read Ch. 10, 11 from the Practical C Programming book
Read Ch. 12 for next class

HW3
– Don’t wait too long

1

1 Introduction to Computer Science
W 1113 – Lab (C)

Lab8
Suhit Gupta
3/25/04

2 Questions about the first half of the semester?

3 Questions about HW3 or HW4
4 Recap from Lab 6

Code blocks
Global variable scoping
Two dimensional arrays

– arrays of strings
Debugging

5 Recap from Lab 7
Writing a README and comments
Function prototypes (but I am still not sure everyone gets it)
Preprocessors

– #include
– #define

Bit Operators
Debugging

6 More on preprocessors
#ifndef

– Allows for code to be compiled if symbol is not defined.
#ifndef DEBUG

printf(“This is production code”);
#endif

#else
– basically does the same thing
#ifdef DEBUG

printf(“This is test code”);
#else DEBUG

printf(“This is production code”);
#endif

You can use these techniques to debug as well as write regular code
– Helps in commenting
– /* lots of code */

7 More on preprocessors
You can use these techniques to debug as well as write regular code

– Helps in commenting
/***** I want to comment this testing section

section_report();
/* Handle the end of section stuff */
dump_table();

***** end of commented out section */
– What is wrong with this code?

You can fix it by writing
#ifdef DEBUG

section_report();
/* Handle the end of section stuff */
dump_table();

#endif

2

8 Structs
Used to define your own types
struct structure-name {
field-type field-name;
field-type field-name;
….
} variable-name;

9 Structs II
So an example would be

struct bin {
char name [30]; // name of the part
int quantity; // how many in the bin
int cost; // the cost of the single part
} printer_cable_bin; // where we put the cables

Here printer_cable_bin is a variable of type struct bin
You can omit the variable name

10 Structs III
The dot operator

– In order to access one of the fields of the struct, for a particular variable, use the form
variable.field

– eg: printer_cable_bin.cost = 1295;
– eg: total_cost = printer_cable_bin.cost *

printer_cable_bin.quantity

11 Structs IV
I said earlier that you don’t have to define variables when defining the struct
So can I do, later in the code –

– bin printer_cables_bin; (i.e. just like I use int or char)
– Answer: No

How to do it correctly
– struct bin printer_cables_bin;
– But this doesn’t define any of the values inside of bin, therefore those remain undefined
– So you can either assign them one at a time or you can do the following

struct bin printer_cable_bin = {
“Printer Cables”,
0,
1295
}; // However, this notation can only be used at the time of declaration

Note the semicolons and the commas

12 Structs V
(Shortcut) Initializing values –

struct bin {
char name [30]; // name of the part
int quantity; // how many in the bin
int cost; // the cost of the single part
} printer_cable_bin = {
“Printer Cables”,
0,
1295
};

Note the commas and the semicolon

13 Structs VI
Structs typically go outside all methods
You can have them inside methods but then those are local only to the method, this is NOT RECOMMENDED

#include<stdio.h>

int main(void) {
struct a {
int b;

3

double c;
};

struct a suhit; /* = { 6 , 7.213432 };*/

suhit.b = 5;
suhit.c = 3.2;

printf("%d\n", suhit.b);
printf("%f\n", suhit.c);

return 0;
}

14 Unions
There are like structs, however they have only one memory space.
union structure-name {
field-type field-name;
field-type field-name;
….
} variable-name;

15 Unions II
struct bin {
char name [30]; // name of the part
int quantity; // how many in the bin
double cost; // the cost of the single part
} printer_cable_bin; // where we put the cables

VS

union bin {
char name [30]; // name of the part
int quantity; // how many in the bin
double cost; // the cost of the single part
} printer_cable_bin; // where we put the cables

Make space for largest variable

16 Unions III
You can overwrite quantities, in union

printer_cables_bin.name = “Printer Cables”
printer_cables_bin.cost = 10;
printf(“The name of the bin is %s\n”, printer_cables_bin.name);
– What will the produce?
– Answer: Unexpected result
– You must keep track of which field you used

So why use this?
– Memory space saving

17 Typedefs
Struct allows you to create a data type/structure
Typedefs allow the programmer to define their own variable type

18 Typedefs II
Usage

– typedef type-declaration;
– where type-declaration is the same as variable declaration, except that a type name is used

instead of a variable name
– eg: typedef int count; //creates a new type count that is the //same as an

integer
– Now you can say – count a; //equal to int a;

19 Typedefs III
But you can get more complex

4

– typedef int group[10];
You can now say group classroom, which will create a variable classroom of 10 integers

main() {
typedef int group[10];
group class;
for (i=1; i<10; i++)

class[i] = 0;
return 0;
}

20 Typedefs IV
But you can get more complex

– typedef struct bin bin
This creates a variable type bin of type struct bin, and you can now say bin printer_cables_bin, instead of struct bin printer_cables_bin

struct bin {
char name [30];
int quantity;
int cost;
};

typedef struct bin bin;

bin printer_cables_bin = {“Printer Cables”, 10, 1290};

21 Enums
This is designed for variables that contain only a limited set of values
Traditionally, if you wanted to set up the days of a week, you would -

typedef int week_day;
const int Sunday = 0;
const int Monday = 1;
const int Tuesday = 2;
const int Wednesday = 3;
const int Thursday = 4;
const int Friday = 5;
const int Saturday = 6;

week_day today = Tuesday;

22 Enums II
That was cumbersome
You can say
enum week_day {Sunday, Monday, Tuesday, Wednesday, Thursday, Friday,
Saturday};

enum week_day today = Tuesday;
Usage
enum enum-name (tag-1, tag-2, ….} variable-name;

23 Enums III
You can omit variable-name, like in struct and union
C implements the enum type as compatible with integer, so it is legal to say

– today = 5; //though this may throw a warning
// will make today Thursday

24 Enums IV – more examples
enum week_day {Sunday, Monday, Tuesday, Wednesday, Thursday, Friday,
Saturday};
enum day d1, d2; // makes d1 and d2 of type // enum day

d1=Friday;
if (d1==d2)

…

5

25 Enums V – more examples
You can use it to do switches

enum week_day {Sunday, Monday, Tuesday, Wednesday, Thursday, Friday, Saturday};

typedef enum day day;

day find_next_day(day d) {

day next_day;

switch(d) {
case Sunday:

next_day = Monday;
break;

case Monday:
next_day = Tuesday;
break;

… …
case Saturday:

next_day = Sunday;
break;

}
return next_day;

}

26 Arrays of Structs
struct time (

int hour;
int minute;
int second;

};

const int MAX_LAPS = 4;
strcut time lap[MAX_LAPS];

lap[count].hour = hour;
lap[count].minute = minute;
lap[count].second = second;
++count;

27 Arrays of Structs II
Another way of initializing

struct time start_stop[2] = {
{10, 0, 0},
{12, 0, 0}

};

28 Structs with arrays
struct mailing {

char name[60];
char address1[60];
char address2[60];
char city[40];
char state[2];
long int zip;

};

struct mailing list[MAX_ENTRIES];

list[count].name[0]=S;

29 Casting
(type) expression
You already know this
int a;
float b, total;
total = (float)a + b;

6

30 Assignment
Read Ch. 12 from the Practical C Programming book
Start reading Ch. 13 for next class
This class is going to get hard (pointers and memory allocation)
HW4

– Don’t wait too long

1

1 Introduction to Computer Science
W 1113 – Lab (C)

Lab9
Suhit Gupta
4/1/04

2 Questions about HW4
3 Recap from Lab 7

Writing a README and comments
Function prototypes (but I am still not sure everyone gets it)
Preprocessors

– #include
– #define

Bit Operators
Debugging

4 Recap from Lab 8
preprocessors
struct
union
typedef
enum

5 Pointer Basics
A pointer is a variable in C that contains a memory location.
Pointers are used in programs to access memory and manipulate addresses.

– We have already seen it briefly in scanf() where usage was scanf(“%d”, &v);

6 Pointer Basics II
Declaration

– int *p;
– This creates ‘p’, which is of type “pointer to int”
– The legal range of values for any pointer always includes the special address 0 and a set of positive integers that

are interpreted as machine addresses on the system
& is used to “point to” the address of a variable

– This is used to dereference a variable’s memory location
– Officially - & is an operator that retrieves the memory address of a variable

7 Pointer Basics III
Examples

– p = &i; // p has the memory location of i
// therefore *p points to i

– p = 0;// shows assignment of p to 0

– p = NULL; // same as p = 0;

– p = (int *) 1307; // p now has an absolute // address in
memory // We do this by using a cast //
This is typically not done, why?

8 Pointer Basics IV
Typical example (ptrexample0.c)

2

int var; // Declare an integer var
int *p; // Declare p as a pointer to an integer

var = 4; // Set the value of var to be 4
p = &var; // Set p to be the address of var

printf (“%d”, p); // Is this accurate?

*p = 5; // Sets the value of the thing p is pointing to, to 5
p = 5; // What will this do?

9 Pointer Addressing/Dereferencing
int a, b;
int *p;

a = b = 7;
p = &a;

printf(“%d\n”, *p); // What is printed?

*p = 3;
printf(“%d\n”, a); // What is printed?

10 Pointer Addressing/Dereferencing

p = &b;

*p = 2 * *p – a;
printf(“b = %d\n”, b); // What does this print?

11 * and & relationship
Simply put, the dereference operator (*) is the inverse of the address operator (&).

double x, y, *p;

p = &x;
y = *p;

// Here, p is assigned to address of x. Then y is assigned to the
// value of object pointed to by p

y = *&x;
y = x;
//How do these two statements relate to the above two?

(ptrexample1.c)

12 Multiple pointers can point to one location
int something;

int *first_ptr;
int *second_ptr;

something = 1;

first_ptr = &something;
second_ptr = first_ptr;

3

13 Convince yourself
14 Call by reference

Pointers can be used as function arguments
We have been typically using call by value
Remember the swap function

#include <stdio.h>

int swap (int a, int b);
int main () {

int x=3, y=7;
printf("%d %d\n", x, y);
swap (x,y);
printf("%d %d\n", x, y);
return 0;

}

int swap (int a, int b) {
int tmp;
tmp=a;
a=b;
b=tmp;
return a; // I can return only one value, what do I return?

} //ptrexample2.c

15 Call by reference II
Note that the call-by-value has problems in that only the method’s local values are
affected.
Therefore we need something else

– Pointers to the rescue
– We call other functions and pass parameters by reference
– New code looks like

16 Call by reference III
#include <stdio.h>

int swap (int *, int *);

int main() {
int x=3, y=7;

printf(“%d %d\n”, x, y);

swap (&x,&y);
printf(“%d %d\n”, x, y);
return 0;

}

int swap (int *p, int *q) {
int tmp;

tmp = *p;
*p = *q;
*q = tmp;

}
//ptrexample3.c

17 Call by reference IV
Another example

#include <stdio.h>

void inc_count (int *count_ptr)

int main () {
int count = 0;

while (count < 10)
inc_count(&count);

return 0;
}

void inc_count(int *count_ptr) {
(*count_ptr)++;

}

18 Assignment
Read Ch. 13 from the Practical C Programming book

4

HW4

1

1 Introduction to Computer Science
W 1113 – Lab (C)

Lab10
Suhit Gupta
4/8/04

2 Questions about HW5
z I highly recommend that you start early
z It is not an easy assignment

3 Recap from Lab 8
z preprocessors
z struct
z union
z typedef
z enum

4 Recap from Lab 9
z Pointer basics
z Pointer addressing/dereferencing
z * and & relationship
z Call by reference

5 const Pointers
z Declaring constant pointers is a bit tricky
const int result = 5;
z Now result is 5, so result=10; is illegal

– BTW, why would I use const and not #define
z However, the following does not limit answer_ptr as above
const chat *answer_ptr = “Forty-Two”;
z Instead, it tells the compiler that whatever answer_ptr is pointing to, is a contant
z So now the data cannot be changed but the pointer can

6 Pointer Arithmetic
z What do the following return?

– given –> char data =‘a’; char *ptr = &data;
1. &data
2. ptr
3. &ptr
4. *ptr
5. *ptr+1
6. *(ptr+1)
7. ++ptr
8. ptr++
9. *++ptr
10. *(++ptr)
11. *ptr++
12. (*ptr)++
13. ++*ptr++
14. ++*++ ptr

7 Pointers and Arrays
z As shown from before, C allows pointer arithmetic. And this is actually very helpful with arrays
char array[5];
char *array_ptr = &array[0];

2

z This means, array_ptr is array[0], array_ptr+1 is array[1], and so on…
z However (*array_ptr) + 1 is not array[1], instead it is array[0] + 1

– ptrexample4.c
z Now this is a horrible way of representing array, so why use this?

8 Pointers and Arrays II
#include <stdio.h>

#define ARRAY_SIZE 10

char array[ARRAY_SIZE + 1] = “0123456789”;

int main() {
int index;
printf(“&array[index] (array+index) array[index]\n”);
for (index=0; index<ARRAY_SIZE; ++i) {

printf(“0x%-10p 0x%-10p 0x%x\n”, \
&array[index], (array+index), array[index]);

return 0;
}
//ptrexample9.c

z What does this program do?

9 Pointers and Arrays III
z Arrays are actually pointers to a sequential set of memory locations

– char a[10]; means ‘a’ points to the array’s 0th memory location
z Feel like horror movie revelation?
z However, this actually helps us with pointers

– you don’t have to pass the address of the array, you can just pass the array itself

10 Pointers and Arrays IV
#include <stdio.h>

char strA[80] = "A string to be used for demonstration purposes";
char strB[80];

int main(void) {

char *pA; /* a pointer to type character */
char *pB; /* another pointer to type character */
puts(strA); /* show string A */
pA = strA; /* point pA at string A */
puts(pA); /* show what pA is pointing to */
pB = strB; /* point pB at string B */
putchar('\n'); /* move down one line on the screen */
while(*pA != '\0') /* line A (see text) */
{

*pB++ = *pA++; / * line B (see text) */
}
pB = '\0'; / line C (see text) */
puts(strB); /* show strB on screen */
return 0;

} //ptrexample5.c

11 Pointers and Strings
z You can use pointers to separate strings
z Assume given string is of the form “First/Last”
z You can find the / using strchr (used to find a character in a string, and it returns a pointer to the first occurrence of the

character
– Then replace it with a NULL

z OR, using pointers, you don’t have to reaplce anything
– just have a pointer point to the beginning of the string (this is easy since we just learned about arrays, and we know that strings

are arrays)
– make a new pointer to point to the location after the ‘/’

z No over-writing needed, you preserve the original data

12 Pointers and structures
z Another motivation for pointers, reduces the amount of data to be moved
z Reminder no structures – ptrexample6.c
z What does the following do?

struct mailing {
char name[60];
char address1[60];
char address2[60];
char city[40];
char state[2];

3

long int zip;
} list[MAX_ENTRIES];

13 Pointers and structures II
z The code on the previous slide create a mailing list struct
z We may need to sort the mailing lists
z Each entry is fairly long (note the size of each array)

– btw… how long is each entry of the struct?
z So that is a lot of data to move around
z A solution: declare an array of pointers and then sort the pointers

14 Pointers and structures III
z Therefore, looks at the following piece of code

struct mailing *list_ptrs[MAX_ENTRIES];
int current;

for (current=0; current=number_of_entries; ++current) {
list_ptrs[current] = &list[current];

}

z What does the above piece of code do?
– Instead of moving a 226 byte structure aroung, we only move 4 byte pointers
– Therefore sorting is much faster

15 Pointers and structures IV
z Accessing pointer structures is similar to regular structures
z Remember the ‘.’ operator

– It is replaced with the ‘->’ operator in pointers to structures, rather than the structure itself
struct SIMPLE {

int a;
int b;
int c;

}

z Things are fairly trivial here, as before…
– struct SIMPLE simple;
– simple.a = 1;
– etc.

16 Oh btw…
typedef struct {

int a;
int b;
int c;

} SIMPLE;
z What does this do?
z And how is it different from
typedef struct SIMPLE {

int a;
int b;
int c;

} s;

17 Pointers and structures V
struct COMPLEX {

float f;
int a[20];
long *lp;
struct SIMPLE s;
struct SIMPLE sa[10];
struct SIMPLE *sp;

}

4

z struct COMPLEX comp;
z ((comp.sa) [4]).c

– same as comp.sa[4].c

18 Pointers and structures VI
z However, if you have

– struct COMPLEX *cp;
– Then, you can only have

z (*cp).f
z But this is a pain to write everytime, so -> is used instead
z cp->f

z There is now tons of fun you can have with
* & . ->

z Combine these to access nested structs, pointers to structs, plain structs, whatever…

19 Command line arguments
z Next motivation for pointers - we have already seen this
z main (int argc, char *argv[]) {
z The array argv[] contains the actual arguments

– however it is of type pointer to a character array

20 Command line arguments
z Now you can learn to use flags
z What are flags?

– “-v”, “-h” after your program will set some setting, or call your program in a particular mode
z This is typically done in most programs
z Note most ‘man’ pages
z “-h” flag used in addition to the README

21 Pointer to a pointer
z int **c; declares c as a pointer to a pointer to an integer
int a = 12;
int *b = &a;
int **c = &b;
z Pointers to pointers follow the same rules as just regular pointers

22 How not to use pointers…
z What is wrong with the following?
int *a;
*a = 12;
z a doesn’t have a place to put 12

23 Final motivation for pointers
z We will see this next time
z malloc();
z You can use this function to allocate memory to certain variables or arrays
z You can then point to this memory using pointers
z This is also useful in dealing with peripherals of a computer
z We will also see more on arrays and multi-dimensional arrays
z But all this for next time ☺

24 Assignment

5

z Read Ch. 17 from the Practical C Programming book

z HW5

1

1 Introduction to Computer Science
W 1113 – Lab (C)

Lab11
Suhit Gupta
4/15/04

2 Questions about HW5
3 Recap from Lab 8

z preprocessors
z struct
z union
z typedef
z enum

4 Recap from Lab 9
z Pointer basics
z Pointer addressing/dereferencing
z * and & relationship
z Call by reference

5 Recap from Lab 10
z const Pointers
z Pointer arithmetic
z Pointers and Arrays
z Pointers and Strings
z Pointers and Structs
z Command Line Arguments (Pointers)
z Pointer to a Pointer
z How not to use pointers

6 A small segway…
z You guys asked questions about the printf statement here last time
printf("&array[index] (array+index) array[index]\n");

for (index=0; index<ARRAY_SIZE; ++index)
printf("0x%-10p 0x%-10p 0x%x\n", \
&array[index], (array+index), array[index]);

z Here “-10” left justifies the text
z The %x prints out hexadecimal
z For lots more information on printf

– man printf
– man 3 printf
– man 3c printf
– man –s 3c printf

7 Storing an indeterminate amount of data
z How would you store an indeterminate amount of data?
z You create a bank, but you don’t know how many accounts you are going to have
z Two ways to fix this

– Growable arrays
z If the array fills up, create an array twice its size and copy all the elements over

– Linked Lists

8 Pointers and linked lists

2

z Instead of statically declaring an array, we can create a bunch of nodes and link them together
struct node {

struct node *next_ptr;
int value;

}
z If you wanted to create a large number of these nodes
struct node node_1;
struct node node_2;
z BTW, do you guys know what linked lists are?

9 Pointers and linked lists II
z However, you can only declare a limited number of nodes.

– well, ok, so you can create a lot, but if you didn’t know how many you would need, then you
have a problem.

z Therefore you can allocate memory dynamically

10 function malloc()
z malloc();

– usage: void *malloc (unsigned int);
– It allocates storage for a variable and returns a pointer.
– It is used to create things out of thin air ☺
– Up to now, we use pointers to point to predefined variables
– With malloc we can allocate memory without having to predefine a variable
– The void * mean that malloc returns a generic pointer

11 malloc examples
#include <stdlib.h>
main() {

char *string_ptr;
string_ptr = malloc (80);

}

z This allocates storage for a character string 80 bytes long (‘\0’ included)

12 malloc examples
z More precisely

#include <stdlib.h>
main() {

char *string_ptr;
string_ptr = malloc (80 * sizeof(char));

}

13 malloc examples II
z You may be allocating lots of variables of type struct, each of which has large arrays. Therefore you are allocating real space in memory for each instance

14 free()
z It is the opposite of malloc
z malloc allocates memory
z You can de-allocate it using free
z free takes a pointer as an argument, just as malloc returns a pointer
z Usage: free(pointer);

– Here pointer is what was returned by malloc

3

z Not freeing / Double freeing is bad

15 free() example
#include <stdlib.h>
main() {

char *string_ptr;
string_ptr = malloc (80);

free(string_ptr);
string_ptr = NULL;

}
z You typically NULL out the pointer as well
z If you don’t use free, you will keep eating the allocated memory every time you call the respective function

16 Heaps and Stacks
z How does all of this happen in memory?
z There are two ways that this is all stored in memory

– Heaps
– Stacks

z Stacks used for regular variables that you have seen so far
z Heaps used for malloc();

17 Heaps and Stacks II
z When you call a function, space for all the local function variables, etc. are created in

memory, in a stack frame
– When you leave the function, all that memory is cleaned up

z However, when you allocate space using malloc, it is allocated in a heap
– It is not cleaned up when leaving a function
– Therefore you have to use free

18 Dangling pointers
z A dangling pointer is a surviving reference to an object that no longer exists at that

address. Dangling pointers typically arise from one of:
– A premature free, where an object is freed, but a reference is retained;
– Retaining a reference to a stack-allocated object, after the relevant stack frame has been

popped.

19 Bad code (preliminary free)
int main(void) {
int *result = malloc(sizeof(int));
*result = 6;
free(result);
printf(“result is %d\n”, *result);

}

20 Bad code (stack memory)
int main(void) {

int *result = square(6);
printf(“result is %d\n”, *result);

}

int *square(int i) {
int j = i * i;
return &j;

4

}

21 Back to linked lists
z So how does malloc help us here?
struct linked_list {

char data[30];
struct linked_list *next_ptr;

}
struct linked_list *first_ptr = NULL;
z So we want to use malloc instead of creating an array of linked lists that will limit the number of

nodes in the linked list to the size of the array
z How can we do this?

22 Pointers and Linked Lists contd…
new_node_ptr = malloc(sizeof(struct linked_list));
z This created the new node and allocates the correct amount of memory
(*new_node_ptr).data = item;
z This will store the value of item into data
(*new_node_ptr).next_ptr = first_ptr;
z The node now points to first_ptr
first_ptr = new_node_ptr;
z The new element is now the first element

23 One other concept like malloc()
z calloc()

– Usage: void *calloc (int n, int size_of_n);
– similar to malloc(), except that you give it that second argument of the number of elements

followed by the size of each of those elements
– Slightly cleaner than malloc(sizeof(foo) * nElements)

24 More code examples
z Average n numbers in a dynamically-defined array
z Add an element to the end of the linked list instead of the beginning
z (HARD!) Delete an element from a linked list

25 Assignment
z Read Ch. 14 from the Practical C Programming book

z HW5

1

1 Introduction to Computer Science
W 1113 – Lab (C)

Lab12
Suhit Gupta
4/22/04

2 Questions about HW6
3 Recap from Lab 10

const Pointers
Pointer arithmetic
Pointers and Arrays
Pointers and Strings
Pointers and Structs
Command Line Arguments (Pointers)
Pointer to a Pointer
How not to use pointers

4 Recap from Lab 11
malloc
free

– Dangling pointers
calloc
Pointers and Linked Lists

5 A repeat of the linked list example
So how does malloc help us here?

struct linked_list {
char data[30];
struct linked_list *next_ptr;

}
struct linked_list *first_ptr = NULL;

So we want to use malloc instead of creating an array of linked lists that will limit the number of
nodes in the linked list to the size of the array
How can we do this?

6 Pointers and Linked Lists contd…
new_node_ptr = malloc(sizeof(struct linked_list));

This created the new node and allocates the correct amount of memory
(*new_node_ptr).data = item;

This will store the value of item into data
(*new_node_ptr).next_ptr = first_ptr;

The node now points to first_ptr
first_ptr = new_node_ptr;

The new element is now the first element

7 File I/O
Now that you know pointers and malloc, you are ready for file I/O
Usage: FILE *file;
To open a file – fopen();
Usage: void *fopen(name, mode);

– file = fopen (name, mode);

2

– NULL is returned on error
– name is the actual name of the file
– mode indicate the property with which to open the file

8 Options for mode
mode indicates whether the file is open for reading or writing
‘w’ for writing
‘r’ for reading
Example

FILE *in_file;
in_file = fopen(“input.txt”, “r”);
if (in_file == NULL) {

fprintf (stderr, “Error: Could not open the input file ‘input.txt’\n);
exit (8);

}

9 Close a file – fclose()
fclose() will close a file
Usage: fclose (pointer to file);
status = fclose(in_file);

– You don’t need status
fclose(in_file);

– This will just throw away the return value

– ‘status’ will be 0 is file was closed successfully
– It will be non-zero is there is an error

Do a man on fclose to see the different error codes

10 Simple operations
fputc – This function writes a single character to a file

– Usage: fputc (character, file)
fputs – This function writes a string to a file

– Usage: fputs (string, size, file)
– Usage: fputs (string, sizeof(string), file)

This will return a pointer to the string if successful or NULL if there is an error
– Sometimes there are problems when you try to write strings that are very long

11 Simple operations II
fgetc – This function gets a single character from a file

– Usage: fputc (character, file)
– Typically used when you have a stream of data coming in and you need to read the characters coming in one at a time

fgets – This function gets a string to a file (similar to fputs)
– Usage: fgets (string, size, file)
– Usage: fgets (string, sizeof(string), file)

This will return a pointer to the string if successful or NULL if there is an error
– Read the text book as well as the man page to see the intricacies with fgets

You need to worry about the \n, \0, etc at the end of the string as well as the end of the file

12 More operations
fprintf

– Usage: count = fprintf (file, format, parameter1, parameter2, …)
count is the number of characters sent (-1 if error)
format describes how the arguments are to be printed
parameters – to be converted and sent

Similar function
– sprintf

Usage: sprintf (string, format, parameter1, parameter2, …)

13 More operations II
fscanf

– Usage: fscanf (file, format, ¶meter1, …)

3

And similar to fscanf is sscanf
– Usage: fscanf (string, format, ¶meter1, …)

14 Example
#include <stdio.h>
#include <stdlib.h>

int main() {
char name [100];
FILE *in_file;

printf (“Name of file? ”);
fgets(name, sizeof(name), stdin);

in_file = fopen(name, “r”);

if (in_file == NULL) {
fprintf(stderr, “Could not open the file\n”);
exit (8);

}
printf (“File found\n”);
fclose(in_file);
return 0;

}

15 Example II
#include <stdio.h>
#include <stdlib.h>
const char FILE_NAME[] = “input.txt”;

int main() {
int count = 0;
FILE *in_file;
int ch;

in_file = fopen(name, “r”);
if (in_file == NULL) {

fprintf(stderr, “Could not open the file\n”);
exit (8);

}
while (1) {

ch = fgetc(in_file);
if (ch == EOF)

break;
count++;

}
printf (“Number of characters in %s is %d\n”, FILE_NAME, count);
fclose(in_file);
return 0;

}

16 Example III
#include <stdio.h>
#include <stdlib.h>
#ifndef __MSDOS__
#include <unistd.h>
#endif __MSDOS__

int main() {
int cur_char;
FILE *out_file;

out_file = fopen (“test.out”, “w”);
if (out_file == NULL) {

fprintf(stderr, “Cannot open output file\n”);
exit (8);

}
for (curr_char = 0; cur_char < 128; cur_char++)

fputc(cur_char, outfile);
fclose (out_file);
return 0;

}

17 Advanced concept - strtok()
Used to tokenize a given string
Usage: char *strtok (char *s1, const char *s2)
It searches for tokens in s1, using the character in s2 as token separator
If s1 contains one or more tokens

– the first token in s1 is found
– the character immediately following it is overwritten with a NULL
– the remainder of s1 is stored elsewhere
– the address of the first character in the token is returned
– subsequent calls with s1 equal to NULL return the base address of a string supplied by the system that contains the

next token
– If no additional tokens are available, NULL is returned

4

18 Example using strtok
char s1[] = “ this is,an example ; ”;
char s2[] = “,; ”;

printf (“\“%s\””, strtok (s1, s2));
while ((p=strtok(NULL, s2)) != NULL) // p here is a pointer to the

printf(“ \“%s\””, p); // character we are checking
putchar(‘\n’);

This will print out
– “this” “is” “an” “example”

19 strdup()
Duplicates a string
Usage: char *strdup(const char *s);
Basically, given a string, it will duplicate it

– it will return a pointer to the duplicate string

20 Things to remember
Always close the file before leaving the program
Functions can take file pointers as arguments

– void my_func (FILE *, FILE *) { … }
All functions take file pointers and not the file names themselves

21 Assignment
Read Ch. 18 from the Practical C Programming book

HW6

1

1 Introduction to Computer Science
W 1113 – Lab (C)

Lab13
Suhit Gupta
4/29/04

2 Questions about HW6
3 Question about review session

Wednesday or Thursday?

4 Recap from Lab 11
malloc
free

– Dangling pointers
calloc
Pointers and Linked Lists

5 Recap from Lab 12
Pointers and Linked Lists
File *

– fopen()
– fclose()

Input and Output to/from files
strtok() and strdup()

6 Short Lab today
We will cover two topics

– Modularity
– Makefiles

7 Modularity
You would want to deal with modularity in two cases

– If you have multiple people working on the same “project”
– If you want to reuse one piece of code in multiple places

8 Example – calendar.c
Look at the solutions
Now, imagine that each function in this piece of code needed to be written by a
different programmer
Separate out all the functions into separate files
Each file gets a .h, but no main()
The main file

– contains the main() function
– includes all the .h files (in “ ”)

9 Let us look at a real example
From the text book…

– Ch. 18, pg 308, 311 and 318

2

10 Makefiles
How does Java compile pieces of code?
How does C do it?
How would you compile multiple files together
Dependencies

11 The GNU make utility
http://www.gnu.org/manual/make-3.79.1/html_node/make_toc.html
The make utility automatically determines which pieces of a large program need to be recompiled,
and issues commands to recompile them.
You have to have a Makefile
Run make to start rules in the Makefile file.

12 Example of a Makefile
13 From the example

To use this makefile to create the executable file called ‘edit’, type: make
make clean
You can also define variables/macros

– CC = gcc
– $(CC)

14 The stuff I covered today
This will not be on the final exam
Good knowledge though

Question about C or about the course in general

15 Assignment
HW6

Have a good Final Exam!

