
1

Introduction to Computer Science
W 1113 – Lab (C)

Lab12

Suhit Gupta
4/22/04

2

Questions about HW6

3

Recap from Lab 10

const Pointers
Pointer arithmetic
Pointers and Arrays
Pointers and Strings
Pointers and Structs
Command Line Arguments (Pointers)
Pointer to a Pointer
How not to use pointers

2

4

Recap from Lab 11

malloc
free
– Dangling pointers

calloc
Pointers and Linked Lists

5

A repeat of the linked list example

So how does malloc help us here?
struct linked_list {

char data[30];
struct linked_list *next_ptr;

}
struct linked_list *first_ptr = NULL;

So we want to use malloc instead of creating an
array of linked lists that will limit the number of nodes
in the linked list to the size of the array
How can we do this?

6

Pointers and Linked Lists contd…

new_node_ptr = malloc(sizeof(struct linked_list));
This created the new node and allocates the correct
amount of memory

(*new_node_ptr).data = item;
This will store the value of item into data

(*new_node_ptr).next_ptr = first_ptr;
The node now points to first_ptr

first_ptr = new_node_ptr;
The new element is now the first element

3

7

File I/O

Now that you know pointers and malloc, you are
ready for file I/O
Usage: FILE *file;
To open a file – fopen();
Usage: void *fopen(name, mode);

– file = fopen (name, mode);
– NULL is returned on error
– name is the actual name of the file
– mode indicate the property with which to open the file

8

Options for mode

mode indicates whether the file is open for reading or writing
‘w’ for writing
‘r’ for reading
Example

FILE *in_file;
in_file = fopen(“input.txt”, “r”);
if (in_file == NULL) {

fprintf (stderr, “Error: Could not open the input file ‘input.txt’\n);
exit (8);

}

9

Close a file – fclose()

fclose() will close a file
Usage: fclose (pointer to file);
status = fclose(in_file);
– You don’t need status

fclose(in_file);
– This will just throw away the return value

– ‘status’ will be 0 is file was closed successfully
– It will be non-zero is there is an error

Do a man on fclose to see the different error codes

4

10

Simple operations

fputc – This function writes a single character to a file
– Usage: fputc (character, file)

fputs – This function writes a string to a file
– Usage: fputs (string, size, file)
– Usage: fputs (string, sizeof(string), file)

This will return a pointer to the string if successful or NULL if
there is an error

– Sometimes there are problems when you try to write strings
that are very long

11

Simple operations II

fgetc – This function gets a single character from a file
– Usage: fputc (character, file)
– Typically used when you have a stream of data coming in and you

need to read the characters coming in one at a time
fgets – This function gets a string to a file (similar to fputs)

– Usage: fgets (string, size, file)
– Usage: fgets (string, sizeof(string), file)

This will return a pointer to the string if successful or NULL if there is
an error

– Read the text book as well as the man page to see the intricacies
with fgets

You need to worry about the \n, \0, etc at the end of the string as well
as the end of the file

12

More operations

fprintf
– Usage: count = fprintf (file, format, parameter1,

parameter2, …)
count is the number of characters sent (-1 if error)
format describes how the arguments are to be printed
parameters – to be converted and sent

Similar function
– sprintf

Usage: sprintf (string, format, parameter1, parameter2,
…)

5

13

More operations II

fscanf
– Usage: fscanf (file, format, ¶meter1, …)

And similar to fscanf is sscanf
– Usage: fscanf (string, format, ¶meter1, …)

14

Example

#include <stdio.h>
#include <stdlib.h>

int main() {
char name [100];
FILE *in_file;

printf (“Name of file? ”);
fgets(name, sizeof(name), stdin);

in_file = fopen(name, “r”);

if (in_file == NULL) {
fprintf(stderr, “Could not open the file\n”);
exit (8);

}
printf (“File found\n”);
fclose(in_file);
return 0;

}

15

Example II

#include <stdio.h>
#include <stdlib.h>
const char FILE_NAME[] = “input.txt”;

int main() {
int count = 0;
FILE *in_file;
int ch;

in_file = fopen(name, “r”);
if (in_file == NULL) {

fprintf(stderr, “Could not open the file\n”);
exit (8);

}
while (1) {

ch = fgetc(in_file);
if (ch == EOF)

break;
count++;

}
printf (“Number of characters in %s is %d\n”, FILE_NAME, count);
fclose(in_file);
return 0;

}

6

16

Example III

#include <stdio.h>
#include <stdlib.h>
#ifndef __MSDOS__
#include <unistd.h>
#endif __MSDOS__

int main() {
int cur_char;
FILE *out_file;

out_file = fopen (“test.out”, “w”);
if (out_file == NULL) {

fprintf(stderr, “Cannot open output file\n”);
exit (8);

}
for (curr_char = 0; cur_char < 128; cur_char++)

fputc(cur_char, outfile);
fclose (out_file);
return 0;

}

17

Advanced concept - strtok()

Used to tokenize a given string
Usage: char *strtok (char *s1, const char *s2)
It searches for tokens in s1, using the character in s2
as token separator
If s1 contains one or more tokens

– the first token in s1 is found
– the character immediately following it is overwritten with a

NULL
– the remainder of s1 is stored elsewhere
– the address of the first character in the token is returned
– subsequent calls with s1 equal to NULL return the base

address of a string supplied by the system that contains the
next token

– If no additional tokens are available, NULL is returned

18

Example using strtok

char s1[] = “ this is,an example ; ”;
char s2[] = “,; ”;

printf (“\“%s\””, strtok (s1, s2));
while ((p=strtok(NULL, s2)) != NULL) // p here is a pointer to the

printf(“ \“%s\””, p); // character we are checking
putchar(‘\n’);

This will print out
– “this” “is” “an” “example”

7

19

strdup()

Duplicates a string
Usage: char *strdup(const char *s);
Basically, given a string, it will duplicate it
– it will return a pointer to the duplicate string

20

Things to remember

Always close the file before leaving the
program
Functions can take file pointers as
arguments
– void my_func (FILE *, FILE *) { … }

All functions take file pointers and not the file
names themselves

21

Assignment

Read Ch. 18 from the Practical C
Programming book

HW6

