Introduction to Computer Science
W 1113 - Lab (C)
Labl2

Suhit Gupta
4/22/04

Questions about HW6
G

Recap from Lab 10
G

const Pointers

Pointer arithmetic

Pointers and Arrays

Pointers and Strings

Pointers and Structs

Command Line Arguments (Pointers)
Pointer to a Pointer

How not to use pointers

Recap from Lab 11
G
e malloc
o free
- Dangling pointers
e calloc
e Pointers and Linked Lists

A repeat of the linked list example
QR —

e So how does malloc help us here?
struct linked_list {

char data[30];

struct linked_list *next_ptr;

}
struct linked_list *first_ptr = NULL;

e So we want to use malloc instead of creating an
array of linked lists that will limit the number of nodes
in the linked list to the size of the array

e How can we do this?

Pointers and Linked Lists contd...
.|

new_node_ptr = malloc(sizeof(struct linked_list));

e This created the new node and allocates the correct
amount of memory

(*new_node_ptr).data = item;

e This will store the value of item into data
(*new_node_ptr).next_ptr = first_ptr;

e The node now points to first_ptr

first_ptr = new_node_ptr;

e The new element is now the first element

File I/O

e —
e Now that you know pointers and malloc, you are
ready for file /0
o Usage: FILE *file;
e To open a file — fopen();
e Usage: void *fopen(name, mode);
- file = fopen (name, mode);
- NULL is returned on error
- name is the actual name of the file
- mode indicate the property with which to open the file

Options for mode

QR —
mode indicates whether the file is open for reading or writing
‘w’ for writing

‘r' for reading

Example

FILE *in_file;

in_file = fopen(“input.txt”, “r");

if (in_file == NULL) {
fprintf (stderr, “Error: Could not open the input file ‘input.txt'\n);
exit (8);

}

Close afile — fclose()
. |

e fclose() will close a file
e Usage: fclose (pointer to file);
e status = fclose(in_file);

- You don't need status

o fclose(in_file);
— This will just throw away the return value
- ‘status’ will be 0 is file was closed successfully

- It will be non-zero is there is an error
e Do a man on fclose to see the different error codes

Simple operations
.|

e fputc — This function writes a single character to a file
- Usage: fputc (character, file)

e fputs — This function writes a string to a file
- Usage: fputs (string, size, file)
- Usage: fputs (string, sizeof(string), file)

e This will return a pointer to the string if successful or NULL if
there is an error

- Sometimes there are problems when you try to write strings
that are very long

10

Simple operations Il
QR —

e fgetc — This function gets a single character from a file
- Usage: fputc (character, file)
- Typically used when you have a stream of data coming in and you
need to read the characters coming in one at a time
e fgets — This function gets a string to a file (similar to fputs)
- Usage: fgets (string, size, file)
- Usage: fgets (string, sizeof(string), file)

e This will return a pointer to the string if successful or NULL if there is
an error

- Read the text book as well as the man page to see the intricacies
with fgets

e You need to worry about the \n, \0, etc at the end of the string as well
as the end of the file

11

More operations

o fprintf
- Usage: count = fprintf (file, format, parameter1,
parameter2, ...)
e count is the number of characters sent (-1 if error)
o format describes how the arguments are to be printed
e parameters — to be converted and sent
e Similar function
- sprintf
e Usage: sprintf (string, format, parameterl, parameter2,
)

12

More operations |l
G
e fscanf
- Usage: fscanf (file, format, ¶meterl, ...)
e And similar to fscanf is sscanf
- Usage: fscanf (string, format, ¶meterl, ...)

13

Example
G

#include <stdio.h>
#include <stdlib.h>

int main() {
char name [100];
FILE *in_file;

printf (“Name of file? ");
fgets(name, sizeof(name), stdin);

in_file = fopen(name, “r");

if (in_file == NULL) {
fprintf(stderr, “Could not open the file\n”);
exit (8);

}

printf (“File found\n”);
felose(in_file);

return 0;

14

Example Il
G

#include <stdio.h>
#include <stdlib.h>
const char FILE_NAME[] = “input.xt’;

int main() {
int count = 0;
FILE *in_file;
int ch;

in_file = fopen(name, “);

if (in_file == NULL) {
fprintf(stderr, “Could not open the file\n’);
exit (8);

}
while (1) {
ch = fgetc(in_file):
if (ch == EOF)
break;
count#+;

}
printf (“Number of characters in %s is %d\n”, FILE_NAME, count);
felose(in_file);

15 return 0;

Example IlI
C]

#include <stdio.h>
#include <stdlib.h>
#ifndef __MSDOS__
#include <unistd.h>
#endif __MSDOS__

int main() {
int cur_char;
FILE *out_file;

out_file = fopen (“test.out”, “w");

if (out_file == NULL) {
fprintf(stderr, “Cannot open output file\n");
exit (8);

for (curr_char = 0; cur_char < 128; cur_char++)
fputc(cur_char, outfile);

fclose (out_file);

return 0;

16

Advanced concept - strtok()

G

e Used to tokenize a given string

e Usage: char *strtok (char *s1, const char *s2)

e |t searches for tokens in s1, using the character in s2
as token separator

e [f s1 contains one or more tokens
- the first token in s1 is found
- t’\r"nﬁfltlaracter immediately following it is overwritten with a

- the remainder of s1 is stored elsewhere
- the address of the first character in the token is returned

- subsequent calls with s1 equal to NULL return the base
address of a string supplied by the system that contains the
next token

17 - If no additional tokens are available, NULL is returned

Example using strtok

char s1[] = “ thisis,an example ;”;
chars2[]=“,; "

printf (“\“%s\™, strtok (s1, s2));
while ((p=strtok(NULL, s2)) '= NULL) // p here is a pointer to the

printf(* \“%s\"", p); /I character we are checking
putchar(\n’);

e This will print out
- ‘“this” “is” “an” “example”

18

strdup()
G

e Duplicates a string

e Usage: char *strdup(const char *s);

e Basically, given a string, it will duplicate it
— it will return a pointer to the duplicate string

19

Things to remember
QR —

e Always close the file before leaving the
program

e Functions can take file pointers as
arguments
- void my_func (FILE *, FILE*) { ... }

e All functions take file pointers and not the file
names themselves

20

Assignment

G
e Read Ch. 18 from the Practical C
Programming book

o HW6

21

