
1

Introduction to Computer Science
W 1113 – Lab (C)

Lab11

Suhit Gupta
4/15/04

2

Questions about HW5

3

Recap from Lab 8

preprocessors
struct
union
typedef
enum

2

4

Recap from Lab 9

Pointer basics
Pointer addressing/dereferencing
* and & relationship
Call by reference

5

Recap from Lab 10

const Pointers
Pointer arithmetic
Pointers and Arrays
Pointers and Strings
Pointers and Structs
Command Line Arguments (Pointers)
Pointer to a Pointer
How not to use pointers

6

A small segway…

You guys asked questions about the printf statement here last
time

printf("&array[index] (array+index) array[index]\n");
for (index=0; index<ARRAY_SIZE; ++index)

printf("0x%-10p 0x%-10p 0x%x\n", \
&array[index], (array+index), array[index]);

Here “-10” left justifies the text
The %x prints out hexadecimal
For lots more information on printf

– man printf
– man 3 printf
– man 3c printf
– man –s 3c printf

3

7

Storing an indeterminate amount of
data

How would you store an indeterminate
amount of data?
You create a bank, but you don’t know how
many accounts you are going to have
Two ways to fix this
– Growable arrays

If the array fills up, create an array twice its size and
copy all the elements over

– Linked Lists

8

Pointers and linked lists

Instead of statically declaring an array, we can
create a bunch of nodes and link them together

struct node {
struct node *next_ptr;
int value;

}
If you wanted to create a large number of these
nodes

struct node node_1;
struct node node_2;

BTW, do you guys know what linked lists are?

next pointer

value = 2

9

Pointers and linked lists II

However, you can only declare a limited
number of nodes.
– well, ok, so you can create a lot, but if you didn’t

know how many you would need, then you have a
problem.

Therefore you can allocate memory
dynamically

4

10

function malloc()

malloc();
– usage: void *malloc (unsigned int);
– It allocates storage for a variable and returns a

pointer.
– It is used to create things out of thin air ☺
– Up to now, we use pointers to point to predefined

variables
– With malloc we can allocate memory without

having to predefine a variable
– The void * mean that malloc returns a generic

pointer

11

malloc examples

#include <stdlib.h>
main() {

char *string_ptr;
string_ptr = malloc (80);

}

This allocates storage for a character string
80 bytes long (‘\0’ included)

12

malloc examples

More precisely

#include <stdlib.h>
main() {

char *string_ptr;
string_ptr = malloc (80 * sizeof(char));

}

5

13

malloc examples II

You may be allocating lots of variables of type struct, each of which has large arrays.
Therefore you are allocating real space in memory for each instance

#include <stdlib.h>

const int MAX_ENTRIES = 10;

struct mailing {
char name[60];
char address1[60];
char address2[60];
char city[40];
char state[2];
long int zip;

};

main() {

struct mailing mailing_list[MAX_ENTRIES];

}

#include <stdlib.h>

const int MAX_ENTRIES = 10;

struct mailing {
char name[60];
char address1[60];
char address2[60];
char city[40];
char state[2];
long int zip;

};

main() {

struct mailing *mailing_list;

mailing_list = malloc(MAX_ENTRIES * sizeof(struct
mailing));

}

14

free()

It is the opposite of malloc
malloc allocates memory
You can de-allocate it using free
free takes a pointer as an argument, just as
malloc returns a pointer
Usage: free(pointer);
– Here pointer is what was returned by malloc

Not freeing / Double freeing is bad

15

free() example

#include <stdlib.h>
main() {

char *string_ptr;
string_ptr = malloc (80);

free(string_ptr);
string_ptr = NULL;

}
You typically NULL out the pointer as well
If you don’t use free, you will keep eating the allocated memory
every time you call the respective function

6

16

Heaps and Stacks

How does all of this happen in memory?
There are two ways that this is all stored in
memory
– Heaps
– Stacks

Stacks used for regular variables that you
have seen so far
Heaps used for malloc();

17

Heaps and Stacks II

When you call a function, space for all the
local function variables, etc. are created in
memory, in a stack frame
– When you leave the function, all that memory is

cleaned up
However, when you allocate space using
malloc, it is allocated in a heap
– It is not cleaned up when leaving a function
– Therefore you have to use free

18

Dangling pointers

A dangling pointer is a surviving reference to
an object that no longer exists at that
address. Dangling pointers typically arise
from one of:
– A premature free, where an object is freed, but a

reference is retained;
– Retaining a reference to a stack-allocated object,

after the relevant stack frame has been popped.

7

19

Bad code (preliminary free)

int main(void) {
int *result = malloc(sizeof(int));
*result = 6;
free(result);
printf(“result is %d\n”, *result);

}

20

Bad code (stack memory)

int main(void) {
int *result = square(6);
printf(“result is %d\n”, *result);

}

int *square(int i) {
int j = i * i;
return &j;

}

21

Back to linked lists

So how does malloc help us here?
struct linked_list {

char data[30];
struct linked_list *next_ptr;

}
struct linked_list *first_ptr = NULL;

So we want to use malloc instead of creating an
array of linked lists that will limit the number of nodes
in the linked list to the size of the array
How can we do this?

8

22

Pointers and Linked Lists contd…

new_node_ptr = malloc(sizeof(struct linked_list));
This created the new node and allocates the correct
amount of memory

(*new_node_ptr).data = item;
This will store the value of item into data

(*new_node_ptr).next_ptr = first_ptr;
The node now points to first_ptr

first_ptr = new_node_ptr;
The new element is now the first element

23

One other concept like malloc()

calloc()
– Usage: void *calloc (int n, int size_of_n);
– similar to malloc(), except that you give it that

second argument of the number of elements
followed by the size of each of those elements

– Slightly cleaner than malloc(sizeof(foo) *
nElements)

24

More code examples

Average n numbers in a dynamically-defined
array
Add an element to the end of the linked list
instead of the beginning
(HARD!) Delete an element from a linked list

9

25

Assignment

Read Ch. 14 from the Practical C
Programming book

HW5

