
1

Introduction to Computer Science
W 1113 – Lab (C)

Lab11

Suhit Gupta
4/15/04

2

Questions about HW5

3

Recap from Lab 8

z preprocessors
z struct
z union
z typedef
z enum



2

4

Recap from Lab 9

z Pointer basics
z Pointer addressing/dereferencing
z * and & relationship
z Call by reference

5

Recap from Lab 10

z const Pointers
z Pointer arithmetic
z Pointers and Arrays
z Pointers and Strings
z Pointers and Structs
z Command Line Arguments (Pointers)
z Pointer to a Pointer
z How not to use pointers

6

A small segway…

z You guys asked questions about the printf statement here last 
time

printf("&array[index] (array+index) array[index]\n");
for (index=0; index<ARRAY_SIZE; ++index)

printf("0x%-10p 0x%-10p 0x%x\n", \
&array[index], (array+index), array[index]);

z Here “-10” left justifies the text
z The %x prints out hexadecimal
z For lots more information on printf

– man printf
– man 3 printf
– man 3c printf
– man –s 3c printf



3

7

Storing an indeterminate amount of 
data

z How would you store an indeterminate 
amount of data?

z You create a bank, but you don’t know how 
many accounts you are going to have

z Two ways to fix this
– Growable arrays

z If the array fills up, create an array twice its size and 
copy all the elements over

– Linked Lists

8

Pointers and linked lists

z Instead of statically declaring an array, we can 
create a bunch of nodes and link them together

struct node {
struct node *next_ptr;
int value;

}
z If you wanted to create a large number of these 

nodes
struct node node_1;
struct node node_2;
z BTW, do you guys know what linked lists are?

next pointer

value = 2

9

Pointers and linked lists II

z However, you can only declare a limited 
number of nodes.
– well, ok, so you can create a lot, but if you didn’t 

know how many you would need, then you have a 
problem.

z Therefore you can allocate memory 
dynamically



4

10

function malloc()

z malloc();
– usage: void *malloc (unsigned int);
– It allocates storage for a variable and returns a 

pointer.
– It is used to create things out of thin air ☺
– Up to now, we use pointers to point to predefined 

variables
– With malloc we can allocate memory without 

having to predefine a variable
– The void * mean that malloc returns a generic 

pointer

11

malloc examples

#include <stdlib.h>
main() {

char *string_ptr;
string_ptr = malloc (80);

}

z This allocates storage for a character string 
80 bytes long (‘\0’ included)

12

malloc examples

z More precisely

#include <stdlib.h>
main() {

char *string_ptr;
string_ptr = malloc (80 * sizeof(char));

}



5

13

malloc examples II

z You may be allocating lots of variables of type struct, each of which has large arrays. 
Therefore you are allocating real space in memory for each instance

#include <stdlib.h>

const int MAX_ENTRIES = 10;

struct mailing {
char name[60];
char address1[60];
char address2[60];
char city[40];
char state[2];
long int zip;

};

main() {

struct mailing mailing_list[MAX_ENTRIES];

}

#include <stdlib.h>

const int MAX_ENTRIES = 10;

struct mailing {
char name[60];
char address1[60];
char address2[60];
char city[40];
char state[2];
long int zip;

};

main() {

struct mailing *mailing_list;

mailing_list = malloc(MAX_ENTRIES * sizeof(struct
mailing));

}

14

free()

z It is the opposite of malloc
z malloc allocates memory
z You can de-allocate it using free
z free takes a pointer as an argument, just as 

malloc returns a pointer
z Usage: free(pointer);

– Here pointer is what was returned by malloc
z Not freeing / Double freeing is bad

15

free() example

#include <stdlib.h>
main() {

char *string_ptr;
string_ptr = malloc (80);

free(string_ptr);
string_ptr = NULL;

}
z You typically NULL out the pointer as well
z If you don’t use free, you will keep eating the allocated memory 

every time you call the respective function



6

16

Heaps and Stacks

z How does all of this happen in memory?
z There are two ways that this is all stored in 

memory
– Heaps
– Stacks

z Stacks used for regular variables that you 
have seen so far

z Heaps used for malloc();

17

Heaps and Stacks II

z When you call a function, space for all the 
local function variables, etc. are created in 
memory, in a stack frame
– When you leave the function, all that memory is 

cleaned up
z However, when you allocate space using 

malloc, it is allocated in a heap
– It is not cleaned up when leaving a function
– Therefore you have to use free

18

Dangling pointers

z A dangling pointer is a surviving reference to 
an object that no longer exists at that 
address.  Dangling pointers typically arise 
from one of: 
– A premature free, where an object is freed, but a 

reference is retained; 
– Retaining a reference to a stack-allocated object, 

after the relevant stack frame has been popped. 



7

19

Bad code (preliminary free)

int main(void) {
int *result = malloc(sizeof(int));
*result = 6;
free(result);
printf(“result is %d\n”, *result);

}

20

Bad code (stack memory)

int main(void) {
int *result = square(6);
printf(“result is %d\n”, *result);

}

int *square(int i) {
int j = i * i;
return &j;

}

21

Back to linked lists

z So how does malloc help us here?
struct linked_list {

char data[30];
struct linked_list *next_ptr;

}
struct linked_list *first_ptr = NULL;
z So we want to use malloc instead of creating an 

array of linked lists that will limit the number of nodes 
in the linked list to the size of the array

z How can we do this?



8

22

Pointers and Linked Lists contd…

new_node_ptr = malloc(sizeof(struct linked_list));
z This created the new node and allocates the correct 

amount of memory
(*new_node_ptr).data = item;
z This will store the value of item into data
(*new_node_ptr).next_ptr = first_ptr;
z The node now points to first_ptr
first_ptr = new_node_ptr;
z The new element is now the first element

23

One other concept like malloc()

z calloc()
– Usage: void *calloc (int n, int size_of_n);
– similar to malloc(), except that you give it that 

second argument of the number of elements 
followed by the size of each of those elements

– Slightly cleaner than malloc(sizeof(foo) * 
nElements)

24

More code examples

z Average n numbers in a dynamically-defined 
array

z Add an element to the end of the linked list 
instead of the beginning

z (HARD!) Delete an element from a linked list



9

25

Assignment

z Read Ch. 14 from the Practical C 
Programming book

z HW5


