
1

Introduction to Computer Science
W 1113 – Lab (C)

Lab10

Suhit Gupta
4/8/04

2

Questions about HW5

I highly recommend that you start early
It is not an easy assignment

3

Recap from Lab 8

preprocessors
struct
union
typedef
enum

2

4

Recap from Lab 9

Pointer basics
Pointer addressing/dereferencing
* and & relationship
Call by reference

5

const Pointers

Declaring constant pointers is a bit tricky
const int result = 5;

Now result is 5, so result=10; is illegal
– BTW, why would I use const and not #define

However, the following does not limit answer_ptr as
above

const chat *answer_ptr = “Forty-Two”;
Instead, it tells the compiler that whatever
answer_ptr is pointing to, is a contant
So now the data cannot be changed but the pointer
can

6

Pointer Arithmetic

What do the following return?
– given –> char data =‘a’; char *ptr = &data;

1. &data
2. ptr
3. &ptr
4. *ptr
5. *ptr+1
6. *(ptr+1)
7. ++ptr
8. ptr++
9. *++ptr
10. *(++ptr)
11. *ptr++
12. (*ptr)++
13. ++*ptr++
14. ++*++ ptr

3

7

Pointers and Arrays

As shown from before, C allows pointer arithmetic.
And this is actually very helpful with arrays

char array[5];
char *array_ptr = &array[0];

This means, array_ptr is array[0], array_ptr+1 is
array[1], and so on…
However (*array_ptr) + 1 is not array[1], instead it is
array[0] + 1

– ptrexample4.c
Now this is a horrible way of representing array, so
why use this?

8

Pointers and Arrays II

#include <stdio.h>

#define ARRAY_SIZE 10

char array[ARRAY_SIZE + 1] = “0123456789”;

int main() {
int index;
printf(“&array[index] (array+index) array[index]\n”);
for (index=0; index<ARRAY_SIZE; ++i) {

printf(“0x%-10p 0x%-10p 0x%x\n”, \
&array[index], (array+index), array[index]);

return 0;
}
//ptrexample9.c

What does this program do?

9

Pointers and Arrays III

Arrays are actually pointers to a sequential
set of memory locations
– char a[10]; means ‘a’ points to the array’s 0th

memory location
Feel like horror movie revelation?
However, this actually helps us with pointers
– you don’t have to pass the address of the array,

you can just pass the array itself

4

10

Pointers and Arrays IV

#include <stdio.h>

char strA[80] = "A string to be used for demonstration purposes";
char strB[80];

int main(void) {

char *pA; /* a pointer to type character */
char *pB; /* another pointer to type character */
puts(strA); /* show string A */
pA = strA; /* point pA at string A */
puts(pA); /* show what pA is pointing to */
pB = strB; /* point pB at string B */
putchar('\n'); /* move down one line on the screen */
while(*pA != '\0') /* line A (see text) */
{

*pB++ = *pA++; / * line B (see text) */
}
pB = '\0'; / line C (see text) */
puts(strB); /* show strB on screen */
return 0;

} //ptrexample5.c

11

Pointers and Strings

You can use pointers to separate strings
Assume given string is of the form “First/Last”
You can find the / using strchr (used to find a character in a
string, and it returns a pointer to the first occurrence of the
character

– Then replace it with a NULL
OR, using pointers, you don’t have to reaplce anything

– just have a pointer point to the beginning of the string (this is easy
since we just learned about arrays, and we know that strings are
arrays)

– make a new pointer to point to the location after the ‘/’
No over-writing needed, you preserve the original data

12

Pointers and structures

Another motivation for pointers, reduces the amount of data to be
moved
Reminder no structures – ptrexample6.c
What does the following do?

struct mailing {
char name[60];
char address1[60];
char address2[60];
char city[40];
char state[2];
long int zip;

} list[MAX_ENTRIES];

5

13

Pointers and structures II

The code on the previous slide create a
mailing list struct
We may need to sort the mailing lists
Each entry is fairly long (note the size of
each array)
– btw… how long is each entry of the struct?

So that is a lot of data to move around
A solution: declare an array of pointers and
then sort the pointers

14

Pointers and structures III

Therefore, looks at the following piece of code

struct mailing *list_ptrs[MAX_ENTRIES];
int current;

for (current=0; current=number_of_entries; ++current) {
list_ptrs[current] = &list[current];

}

What does the above piece of code do?
– Instead of moving a 226 byte structure aroung, we only move 4 byte

pointers
– Therefore sorting is much faster

15

Pointers and structures IV

Accessing pointer structures is similar to regular structures
Remember the ‘.’ operator

– It is replaced with the ‘->’ operator in pointers to structures, rather
than the structure itself

struct SIMPLE {
int a;
int b;
int c;

}

Things are fairly trivial here, as before…
– struct SIMPLE simple;
– simple.a = 1;
– etc.

6

16

Oh btw…

typedef struct {
int a;
int b;
int c;

} SIMPLE;
What does this do?
And how is it different from

typedef struct SIMPLE {
int a;
int b;
int c;

} s;

17

Pointers and structures V

struct COMPLEX {
float f;
int a[20];
long *lp;
struct SIMPLE s;
struct SIMPLE sa[10];
struct SIMPLE *sp;

}

struct COMPLEX comp;
((comp.sa) [4]).c

– same as comp.sa[4].c

18

Pointers and structures VI

However, if you have
– struct COMPLEX *cp;
– Then, you can only have

(*cp).f
But this is a pain to write everytime, so -> is used
instead
cp->f

There is now tons of fun you can have with
* & . ->
Combine these to access nested structs,
pointers to structs, plain structs, whatever…

7

19

Command line arguments

Next motivation for pointers - we have
already seen this
main (int argc, char *argv[]) {
The array argv[] contains the actual
arguments
– however it is of type pointer to a character array

20

Command line arguments

Now you can learn to use flags
What are flags?
– “-v”, “-h” after your program will set some setting,

or call your program in a particular mode
This is typically done in most programs
Note most ‘man’ pages
“-h” flag used in addition to the README

21

Pointer to a pointer

int **c; declares c as a pointer to a pointer to
an integer

int a = 12;
int *b = &a;
int **c = &b;

Pointers to pointers follow the same rules as
just regular pointers

8

22

How not to use pointers…

What is wrong with the following?
int *a;
*a = 12;

a doesn’t have a place to put 12

23

Final motivation for pointers

We will see this next time
malloc();
You can use this function to allocate memory to
certain variables or arrays
You can then point to this memory using pointers
This is also useful in dealing with peripherals of a
computer
We will also see more on arrays and multi-
dimensional arrays
But all this for next time ☺

24

Assignment

Read Ch. 17 from the Practical C
Programming book

HW5

