Introduction to Computer Science
W 1113 - Lab (C)
Lab10

Suhit Gupta
4/8/04

Questions about HW5
. |

e | highly recommend that you start early
e [tis not an easy assignment

Recap from Lab 8
¢ |
® preprocessors
e struct
e union
o typedef
® enum

Recap from Lab 9
N

e Pointer basics

e Pointer addressing/dereferencing

e * and & relationship

e Call by reference

const Pointers
. |

e Declaring constant pointers is a bit tricky
const int result = 5;
e Now result is 5, so result=10; is illegal

- BTW, why would | use const and not #define

e However, the following does not limit answer_ptr as
above

const chat *answer_ptr = “Forty-Two”;
e Instead, it tells the compiler that whatever
answer_ptr is pointing to, is a contant

e So now the data cannot be changed but the pointer
can

Pointer Arithmetic
. |

e What do the following return?
- given —> char data ='a’; char *ptr = &data;
&data
ptr
&ptr
*ptr
*ptr+1
. *(ptr+1)
++ptr
ptr++
. *++ptr
10. *(++ptr)
11 *ptr++
12. (*ptr)++
13, ++*ptr++
6 14. ++*++ ptr

©® NS WN P

Y]

Pointers and Arrays
. |

e As shown from before, C allows pointer arithmetic.
And this is actually very helpful with arrays

char array[5];

char *array_ptr = &array[0];

e This means, array_ptr is array[0], array_ptr+1 is
array[1], and so on...

e However (*array_ptr) + 1 is not array[1], instead it is
array[0] + 1
- ptrexample4.c

e Now this is a horrible way of representing array, so
why use this?

Pointers and Arrays Il
R

#include <stdio.h>
#define ARRAY_SIZE 10
char array[ARRAY_SIZE + 1] = “0123456789";

int main() {
intindex;
printf(“ (d);
for (index=0; index<ARRAY_SIZE; ++i) {
printf(“0x%-10p 0x%-10p Ox%x\n", \

garrayfindex], (array+index), array[index]);
return 0;

}
Iiptrexample9.c

® What does this program do?

Pointers and Arrays llI
. |

e Arrays are actually pointers to a sequential
set of memory locations

- char a[10]; means ‘a’ points to the array's 0"
memory location

e Feel like horror movie revelation?
e However, this actually helps us with pointers

- you don't have to pass the address of the array,
you can just pass the array itself

Pointers and Arrays IV
. |

#include <stdio.h>

char strA[80] = "A string to be used for demonstration purposes”;
char strB[80];

int main(void) {

char *pA; 1+ a pointer to type character */
char *pB; I+ another pointer to type character */
pULS(StrA); 1+ show string A */
DA = StrA; 1+ point pA at string A ¥/
puts(pA); 1+ show what pA s pointing to */
DB = strB; J* point pB at string B ¥/
putchar(n I+ move down one line on the screen */
while(*pA 1= \0) I+ line A (see text) */
pB+ = TpALE | *line B (see text) */
}
“pB =10" Fline C (see text) */
puts(strB); I+ show strB on screen */

retur 0;
Jiptrexamples.c

10

Pointers and Strings
. |

e You can use pointers to separate strings

e Assume given string is of the form “First/Last”

e You can find the / using strchr (used to find a character in a
string, and it returns a pointer to the first occurrence of the
character

- Then replace it with a NULL
e OR, using pointers, you don’t have to reaplce anything
- just have a pointer point to the beginning of the string (this is easy
since we just learned about arrays, and we know that strings are
arrays)
- make a new pointer to point to the location after the /'
e No over-writing needed, you preserve the original data

11

Pointers and structures
. |

e Another motivation for pointers, reduces the amount of data to be
moved

o Reminder no structures — ptrexample6.c

o What does the following do?

struct mailing {
char name[60];
char address1[60];
char address2[60];
char city[40];
char state[2];
long int zip;
}listMAX_ENTRIES];

12

Pointers and structures Il
. |

e The code on the previous slide create a
mailing list struct

e We may need to sort the mailing lists

e Each entry is fairly long (note the size of
each array)
- btw... how long is each entry of the struct?

e So that is a lot of data to move around

e A solution: declare an array of pointers and

13 then sort the pointers

Pointers and structures Il
. |

e Therefore, looks at the following piece of code

struct mailing *list_ptrs[]MAX_ENTRIES];
int current;

for (current=0; current=number_of_entries; ++current) {
list_ptrs[current] = &list[current];
}

o What does the above piece of code do?
- Instead of moving a 226 byte structure aroung, we only move 4 byte
pointers
- Therefore sorting is much faster

14

Pointers and structures IV
. |

e Accessing pointer structures is similar to regular structures
e Remember the ‘.’ operator

- Itis replaced with the ‘->" operator in pointers to structures, rather
than the structure itself

struct SIMPLE {
int a;
int b;
intc;

}

e Things are fairly trivial here, as before...
- struct SIMPLE simple;
- simple.a=1;
- etc.

15

Oh btw...
. |

typedef struct {
int a;
int b;
intc;
} SIMPLE;
e What does this do?
e And how is it different from
typedef struct SIMPLE {
int a;
int b;
intc;

}s;
16

Pointers and structures V

e
struct COMPLEX {
float f;
int a[20];
long *Ip;
struct SIMPLE s;
struct SIMPLE sa[10];
struct SIMPLE *sp;
}

e struct COMPLEX comp;
e ((comp.sa)[4]).c
1 - same as comp.sa[4].c

Pointers and structures VI
. |

e However, if you have
- struct COMPLEX *cp;
- Then, you can only have
o (*cp).f
e But this is a pain to write everytime, so -> is used
instead

o cp->f
e There is now tons of fun you can have with
*& . ->
e Combine these to access nested structs,
18 pointers to structs, plain structs, whatever...

Command line arguments
. |

e Next motivation for pointers - we have
already seen this

e main (int argc, char *argv(]) {

e The array argv[] contains the actual
arguments
- however it is of type pointer to a character array

19

Command line arguments
R
e Now you can learn to use flags

e What are flags?

- “-v", “-h" after your program will set some setting,
or call your program in a particular mode

e This is typically done in most programs
o Note most ‘man’ pages
e “-h” flag used in addition to the README

20

Pointer to a pointer
. |

e int **c; declares c as a pointer to a pointer to
an integer

inta=12;

int*b = &a;

int **c = &b;

e Pointers to pointers follow the same rules as
just regular pointers

21

How not to use pointers...
. |

What is wrong with the following?

int *a,;
*a=12;
e a doesn't have a place to put 12

22

Final motivation for pointers
. |

23

We will see this next time

malloc();

You can use this function to allocate memory to
certain variables or arrays

You can then point to this memory using pointers
This is also useful in dealing with peripherals of a
computer

We will also see more on arrays and multi-
dimensional arrays

But all this for next time ©

Assignment

¢ |
e Read Ch. 17 from the Practical C

Programming book

o HW5

24

