
1

Introduction to Computer Science
W 1113 – Lab (C)

Lab10

Suhit Gupta
4/8/04

2

Questions about HW5

z I highly recommend that you start early
z It is not an easy assignment

3

Recap from Lab 8

z preprocessors
z struct
z union
z typedef
z enum

2

4

Recap from Lab 9

z Pointer basics
z Pointer addressing/dereferencing
z * and & relationship
z Call by reference

5

const Pointers

z Declaring constant pointers is a bit tricky
const int result = 5;
z Now result is 5, so result=10; is illegal

– BTW, why would I use const and not #define
z However, the following does not limit answer_ptr as

above
const chat *answer_ptr = “Forty-Two”;
z Instead, it tells the compiler that whatever

answer_ptr is pointing to, is a contant
z So now the data cannot be changed but the pointer

can

6

Pointer Arithmetic

z What do the following return?
– given –> char data =‘a’; char *ptr = &data;

1. &data
2. ptr
3. &ptr
4. *ptr
5. *ptr+1
6. *(ptr+1)
7. ++ptr
8. ptr++
9. *++ptr
10. *(++ptr)
11. *ptr++
12. (*ptr)++
13. ++*ptr++
14. ++*++ ptr

3

7

Pointers and Arrays

z As shown from before, C allows pointer arithmetic.
And this is actually very helpful with arrays

char array[5];
char *array_ptr = &array[0];
z This means, array_ptr is array[0], array_ptr+1 is

array[1], and so on…
z However (*array_ptr) + 1 is not array[1], instead it is

array[0] + 1
– ptrexample4.c

z Now this is a horrible way of representing array, so
why use this?

8

Pointers and Arrays II

#include <stdio.h>

#define ARRAY_SIZE 10

char array[ARRAY_SIZE + 1] = “0123456789”;

int main() {
int index;
printf(“&array[index] (array+index) array[index]\n”);
for (index=0; index<ARRAY_SIZE; ++i) {

printf(“0x%-10p 0x%-10p 0x%x\n”, \
&array[index], (array+index), array[index]);

return 0;
}
//ptrexample9.c

z What does this program do?

9

Pointers and Arrays III

z Arrays are actually pointers to a sequential
set of memory locations
– char a[10]; means ‘a’ points to the array’s 0th

memory location
z Feel like horror movie revelation?
z However, this actually helps us with pointers

– you don’t have to pass the address of the array,
you can just pass the array itself

4

10

Pointers and Arrays IV

#include <stdio.h>

char strA[80] = "A string to be used for demonstration purposes";
char strB[80];

int main(void) {

char *pA; /* a pointer to type character */
char *pB; /* another pointer to type character */
puts(strA); /* show string A */
pA = strA; /* point pA at string A */
puts(pA); /* show what pA is pointing to */
pB = strB; /* point pB at string B */
putchar('\n'); /* move down one line on the screen */
while(*pA != '\0') /* line A (see text) */
{

*pB++ = *pA++; / * line B (see text) */
}
pB = '\0'; / line C (see text) */
puts(strB); /* show strB on screen */
return 0;

} //ptrexample5.c

11

Pointers and Strings

z You can use pointers to separate strings
z Assume given string is of the form “First/Last”
z You can find the / using strchr (used to find a character in a

string, and it returns a pointer to the first occurrence of the
character

– Then replace it with a NULL
z OR, using pointers, you don’t have to reaplce anything

– just have a pointer point to the beginning of the string (this is easy
since we just learned about arrays, and we know that strings are
arrays)

– make a new pointer to point to the location after the ‘/’
z No over-writing needed, you preserve the original data

12

Pointers and structures

z Another motivation for pointers, reduces the amount of data to be
moved

z Reminder no structures – ptrexample6.c
z What does the following do?

struct mailing {
char name[60];
char address1[60];
char address2[60];
char city[40];
char state[2];
long int zip;

} list[MAX_ENTRIES];

5

13

Pointers and structures II

z The code on the previous slide create a
mailing list struct

z We may need to sort the mailing lists
z Each entry is fairly long (note the size of

each array)
– btw… how long is each entry of the struct?

z So that is a lot of data to move around
z A solution: declare an array of pointers and

then sort the pointers

14

Pointers and structures III

z Therefore, looks at the following piece of code

struct mailing *list_ptrs[MAX_ENTRIES];
int current;

for (current=0; current=number_of_entries; ++current) {
list_ptrs[current] = &list[current];

}

z What does the above piece of code do?
– Instead of moving a 226 byte structure aroung, we only move 4 byte

pointers
– Therefore sorting is much faster

15

Pointers and structures IV

z Accessing pointer structures is similar to regular structures
z Remember the ‘.’ operator

– It is replaced with the ‘->’ operator in pointers to structures, rather
than the structure itself

struct SIMPLE {
int a;
int b;
int c;

}

z Things are fairly trivial here, as before…
– struct SIMPLE simple;
– simple.a = 1;
– etc.

6

16

Oh btw…

typedef struct {
int a;
int b;
int c;

} SIMPLE;
z What does this do?
z And how is it different from
typedef struct SIMPLE {

int a;
int b;
int c;

} s;

17

Pointers and structures V

struct COMPLEX {
float f;
int a[20];
long *lp;
struct SIMPLE s;
struct SIMPLE sa[10];
struct SIMPLE *sp;

}

z struct COMPLEX comp;
z ((comp.sa) [4]).c

– same as comp.sa[4].c

18

Pointers and structures VI

z However, if you have
– struct COMPLEX *cp;
– Then, you can only have

z (*cp).f
z But this is a pain to write everytime, so -> is used

instead
z cp->f

z There is now tons of fun you can have with
* & . ->

z Combine these to access nested structs,
pointers to structs, plain structs, whatever…

7

19

Command line arguments

z Next motivation for pointers - we have
already seen this

z main (int argc, char *argv[]) {
z The array argv[] contains the actual

arguments
– however it is of type pointer to a character array

20

Command line arguments

z Now you can learn to use flags
z What are flags?

– “-v”, “-h” after your program will set some setting,
or call your program in a particular mode

z This is typically done in most programs
z Note most ‘man’ pages
z “-h” flag used in addition to the README

21

Pointer to a pointer

z int **c; declares c as a pointer to a pointer to
an integer

int a = 12;
int *b = &a;
int **c = &b;
z Pointers to pointers follow the same rules as

just regular pointers

8

22

How not to use pointers…

z What is wrong with the following?
int *a;
*a = 12;
z a doesn’t have a place to put 12

23

Final motivation for pointers

z We will see this next time
z malloc();
z You can use this function to allocate memory to

certain variables or arrays
z You can then point to this memory using pointers
z This is also useful in dealing with peripherals of a

computer
z We will also see more on arrays and multi-

dimensional arrays
z But all this for next time ☺

24

Assignment

z Read Ch. 17 from the Practical C
Programming book

z HW5

