
1

Introduction to Computer Science
W 1113 – Lab (C)

Lab9

Suhit Gupta
4/1/04

2

Questions about HW4

3

Recap from Lab 7

Writing a README and comments
Function prototypes (but I am still not sure
everyone gets it)
Preprocessors
– #include
– #define

Bit Operators
Debugging

2

4

Recap from Lab 8

preprocessors
struct
union
typedef
enum

5

Pointer Basics

A pointer is a variable in C that contains a
memory location.
Pointers are used in programs to access
memory and manipulate addresses.
– We have already seen it briefly in scanf() where

usage was scanf(“%d”, &v);

6

Pointer Basics II

Declaration
– int *p;
– This creates ‘p’, which is of type “pointer to int”
– The legal range of values for any pointer always includes

the special address 0 and a set of positive integers that are
interpreted as machine addresses on the system

& is used to “point to” the address of a variable
– This is used to dereference a variable’s memory location
– Officially - & is an operator that retrieves the memory

address of a variable

3

7

Pointer Basics III

Examples
– p = &i; // p has the memory location of i

// therefore *p points to i

– p = 0; // shows assignment of p to 0

– p = NULL; // same as p = 0;

– p = (int *) 1307; // p now has an absolute
// address in memory
// We do this by using a cast
// This is typically not done, why?

8

Pointer Basics IV

Typical example (ptrexample0.c)

int var; // Declare an integer var
int *p; // Declare p as a pointer to an integer

var = 4; // Set the value of var to be 4
p = &var; // Set p to be the address of var

printf (“%d”, p); // Is this accurate?

*p = 5; // Sets the value of the thing p is pointing to, to 5
p = 5; // What will this do?

9

Pointer Addressing/Dereferencing

int a, b;
int *p;

a = b = 7;
p = &a;

printf(“%d\n”, *p); // What is printed?

*p = 3;
printf(“%d\n”, a); // What is printed?

? ?
a b p

?

7 7
a b p

4

10

Pointer Addressing/Dereferencing

p = &b;

*p = 2 * *p – a;
printf(“b = %d\n”, b); // What does this print?

7 7
a b p

3 7
a b p

11

* and & relationship

Simply put, the dereference operator (*) is the inverse of the address
operator (&).

double x, y, *p;

p = &x;
y = *p;

// Here, p is assigned to address of x. Then y is assigned to the
// value of object pointed to by p

y = *&x;
y = x;
//How do these two statements relate to the above two?

(ptrexample1.c)

12

Multiple pointers can point to one location

int something;

int *first_ptr;
int *second_ptr;

something = 1;

first_ptr = &something;
second_ptr = first_ptr;

first_ptr

0x1000

something

1

second_ptr

0x1000
0x1000

5

13

Convince yourself

(* (r = (&j))) *= (*p)* (r = &j) *= *p
(((8 * (* p)) / (* q)) + 7)8 * * p / * q + 7
r = (&x)r = &x
* (* (&p))* * & p
p = (i+7)p = i + 7
p == (& i)p == &i

ValueEquivalent ExpressionExpression

int i=3, j=6, *p=&i, *q=&j, *r;
double x;

Declarations and Initializations

1

illegal

3

illegal

11

18

14

Call by reference

Pointers can be used as function arguments
We have been typically using call by value
Remember the swap function

#include <stdio.h>

int swap (int a, int b);
int main () {

int x=3, y=7;
printf("%d %d\n", x, y);
swap (x,y);
printf("%d %d\n", x, y);
return 0;

}

int swap (int a, int b) {
int tmp;
tmp=a;
a=b;
b=tmp;
return a; // I can return only one value, what do I return?

} //ptrexample2.c

15

Call by reference II

Note that the call-by-value has problems in
that only the method’s local values are
affected.
Therefore we need something else
– Pointers to the rescue
– We call other functions and pass parameters by

reference
– New code looks like

6

16

Call by reference III

#include <stdio.h>

int swap (int *, int *);

int main() {
int x=3, y=7;

printf(“%d %d\n”, x, y);

swap (&x,&y);
printf(“%d %d\n”, x, y);
return 0;

}

int swap (int *p, int *q) {
int tmp;

tmp = *p;
*p = *q;
*q = tmp;

}
//ptrexample3.c

17

Call by reference IV

Another example

#include <stdio.h>

void inc_count (int *count_ptr)

int main () {
int count = 0;

while (count < 10)
inc_count(&count);

return 0;
}

void inc_count(int *count_ptr) {
(*count_ptr)++;

}

18

Assignment

Read Ch. 13 from the Practical C
Programming book

HW4

