
1

Introduction to Computer Science
W 1113 – Lab (C)

Lab8

Suhit Gupta
3/25/04

2

Questions about the first half of the
semester?

3

Questions about HW3 or HW4

2

4

Recap from Lab 6

Code blocks
Global variable scoping
Two dimensional arrays
– arrays of strings

Debugging

5

Recap from Lab 7

Writing a README and comments
Function prototypes (but I am still not sure
everyone gets it)
Preprocessors
– #include
– #define

Bit Operators
Debugging

6

More on preprocessors

#ifndef
– Allows for code to be compiled if symbol is not defined.
#ifndef DEBUG

printf(“This is production code”);
#endif

#else
– basically does the same thing
#ifdef DEBUG

printf(“This is test code”);
#else DEBUG

printf(“This is production code”);
#endif

You can use these techniques to debug as well as write regular code
– Helps in commenting
– /* lots of code */

3

7

More on preprocessors

You can use these techniques to debug as well as write regular code
– Helps in commenting
/***** I want to comment this testing section

section_report();
/* Handle the end of section stuff */
dump_table();

***** end of commented out section */
– What is wrong with this code?

You can fix it by writing
#ifdef DEBUG

section_report();
/* Handle the end of section stuff */
dump_table();

#endif

8

Structs

Used to define your own types
struct structure-name {

field-type field-name;
field-type field-name;
….

} variable-name;

9

Structs II

So an example would be
struct bin {

char name [30]; // name of the part
int quantity; // how many in the bin
int cost; // the cost of the single part

} printer_cable_bin; // where we put the cables

Here printer_cable_bin is a variable of type struct bin
You can omit the variable name

4

10

Structs III

The dot operator
– In order to access one of the fields of the struct,

for a particular variable, use the form variable.field
– eg: printer_cable_bin.cost = 1295;
– eg: total_cost = printer_cable_bin.cost *

printer_cable_bin.quantity

11

Structs IV

I said earlier that you don’t have to define variables when defining the struct
So can I do, later in the code –

– bin printer_cables_bin; (i.e. just like I use int or char)
– Answer: No

How to do it correctly
– struct bin printer_cables_bin;
– But this doesn’t define any of the values inside of bin, therefore those remain

undefined
– So you can either assign them one at a time or you can do the following

struct bin printer_cable_bin = {
“Printer Cables”,
0,
1295

}; // However, this notation can only be used at the time of declaration
Note the semicolons and the commas

12

Structs V

(Shortcut) Initializing values –
struct bin {

char name [30]; // name of the part
int quantity; // how many in the bin
int cost; // the cost of the single part

} printer_cable_bin = {
“Printer Cables”,
0,
1295

};
Note the commas and the semicolon

5

13

Structs VI

Structs typically go outside all methods
You can have them inside methods but then those are local only to the method, this is NOT
RECOMMENDED

#include<stdio.h>

int main(void) {
struct a {
int b;
double c;

};

struct a suhit; /* = { 6 , 7.213432 };*/

suhit.b = 5;
suhit.c = 3.2;

printf("%d\n", suhit.b);
printf("%f\n", suhit.c);

return 0;
}

14

Unions

There are like structs, however they have
only one memory space.
union structure-name {

field-type field-name;
field-type field-name;
….

} variable-name;

15

Unions II

struct bin {
char name [30]; // name of the part
int quantity; // how many in the bin
double cost; // the cost of the single part

} printer_cable_bin; // where we put the cables

VS

union bin {
char name [30]; // name of the part
int quantity; // how many in the bin
double cost; // the cost of the single part

} printer_cable_bin; // where we put the cables

Make space for largest variable

name
quantity

cost

cost

6

16

Unions III

You can overwrite quantities, in union
printer_cables_bin.name = “Printer Cables”
printer_cables_bin.cost = 10;
printf(“The name of the bin is %s\n”,

printer_cables_bin.name);
– What will the produce?
– Answer: Unexpected result
– You must keep track of which field you used

So why use this?
– Memory space saving

17

Typedefs

Struct allows you to create a data
type/structure
Typedefs allow the programmer to define
their own variable type

18

Typedefs II

Usage
– typedef type-declaration;
– where type-declaration is the same as variable

declaration, except that a type name is used
instead of a variable name

– eg: typedef int count; //creates a new type count
that is the //same as an
integer

– Now you can say – count a; //equal to int a;

7

19

Typedefs III

But you can get more complex
– typedef int group[10];

You can now say group classroom, which will create a variable
classroom of 10 integers

main() {
typedef int group[10];
group class;
for (i=1; i<10; i++)

class[i] = 0;
return 0;

}

20

Typedefs IV

But you can get more complex
– typedef struct bin bin

This creates a variable type bin of type struct bin, and you can now
say bin printer_cables_bin, instead of struct bin printer_cables_bin

struct bin {
char name [30];
int quantity;
int cost;

};

typedef struct bin bin;

bin printer_cables_bin = {“Printer Cables”, 10, 1290};

21

Enums

This is designed for variables that contain only a limited set of values
Traditionally, if you wanted to set up the days of a week, you would -

typedef int week_day;
const int Sunday = 0;
const int Monday = 1;
const int Tuesday = 2;
const int Wednesday = 3;
const int Thursday = 4;
const int Friday = 5;
const int Saturday = 6;

week_day today = Tuesday;

8

22

Enums II

That was cumbersome
You can say
enum week_day {Sunday, Monday, Tuesday,

Wednesday, Thursday, Friday, Saturday};

enum week_day today = Tuesday;
Usage
enum enum-name (tag-1, tag-2, ….} variable-name;

23

Enums III

You can omit variable-name, like in struct
and union
C implements the enum type as compatible
with integer, so it is legal to say
– today = 5; //though this may throw a warning

// will make today Thursday

24

Enums IV – more examples

enum week_day {Sunday, Monday, Tuesday,
Wednesday, Thursday, Friday, Saturday};

enum day d1, d2; // makes d1 and d2 of type
// enum day

d1=Friday;
if (d1==d2)

…

9

25

Enums V – more examples

You can use it to do switches

enum week_day {Sunday, Monday, Tuesday, Wednesday, Thursday, Friday, Saturday};

typedef enum day day;

day find_next_day(day d) {

day next_day;

switch(d) {
case Sunday:

next_day = Monday;
break;

case Monday:
next_day = Tuesday;
break;

… …
case Saturday:

next_day = Sunday;
break;

}
return next_day;

}

26

Arrays of Structs

struct time (
int hour;
int minute;
int second;

};

const int MAX_LAPS = 4;
strcut time lap[MAX_LAPS];

lap[count].hour = hour;
lap[count].minute = minute;
lap[count].second = second;
++count;

27

Arrays of Structs II

Another way of initializing

struct time start_stop[2] = {
{10, 0, 0},
{12, 0, 0}

};

10

28

Structs with arrays

struct mailing {
char name[60];
char address1[60];
char address2[60];
char city[40];
char state[2];
long int zip;

};

struct mailing list[MAX_ENTRIES];

list[count].name[0]=S;

29

Casting

(type) expression
You already know this
int a;
float b, total;
total = (float)a + b;

30

Assignment

Read Ch. 12 from the Practical C
Programming book
Start reading Ch. 13 for next class
This class is going to get hard (pointers and
memory allocation)
HW4
– Don’t wait too long

