
1

Introduction to Computer Science
W 1113 – Lab (C)

Lab 6

Janak J Parekh
3/3/04

2

Recap from Lab 5

Function prototypes
Functions
Conditionals
Loops

3

Agenda

Elements for HW#3
– Variable scoping
– Two-dimensional arrays

Good coding practices
Debugging
Midterm review…

2

4

Variable scope

Variables can be declared in different parts of your
program, and this affects how they’re accessible
Global variables are declared outside any function
Local variables are declared inside a function, or any
arbitrary code block
In C, local variables must be declared at the top of
the block
The “closest” one in the same block takes
precedence

5

Example

#include<stdio.h>
int i = 5;
int main(void) {

int i = 10;
{

int i = 12;
}
printf(“%d\n”, i);

}
Yes, this is legitimate syntax! What’s the answer?

6

A note on code blocks…

Be very careful in identifying code blocks; use { } and
proper indentation to keep your code clear
If-else if-else: note that the latter two are optional,
but should clearly correspond to the “original if” if
present… legitimate syntax:
if(a) {

if(b) { … }
else { … }

} else { … }

3

7

Why global variables?

If you have some piece of information used
by lots of functions in the same program, no
need to pass them as variables if they’re
already accessible
However, be careful not to make everything
global
We’ll get more used to structuring data later
in the semester…

8

Permanent vs. temporary variables

Book makes distinction – probably beyond
the “scope” of this class
Modern computers have a much larger stack
Unless you’re doing very special stuff, don’t
worry about it
static: The most confusing keyword in C,
ever

9

Two-dimensional arrays

Easy to set up:
– int a[10][20];
– a[10][12] = 6;
– Might want to “zero out” the array initially… how?

Special meaning with strings
– char strs[10][20];
– You can treat this as a 2D array of chars, or as a 1D array

of strings
– In the latter, how many strings, and how many chars in

each?
– strcpy(strs[3], “Hello world”);

4

10

Good coding practices

Comment!
Proper variable, function naming
– In general, variables and functions have an initial

lowercase, uppercase later
– int numRecords = 0;
– Indentation is very important, especially in

keeping track of scope
emacs will help you in this
I’ve debugged people’s code just by indenting it!

11

Good coding practices (II)

Initial values for (most) variables
– int i = 0;
– int a[10] = { 0 };
– Especially important in C – no presumed default

Avoid very long functions: split up
functionality
Avoid overly complex logic if possible

12

Debugging tips

gcc -Wall
– Compile with “all warnings”
– Often can catch errors this way
– Sometimes will return some “optional” errors

printf()
– When stuck, print out intermediate results as your

program runs

5

13

Using a debugger

Especially with C code that crashes, it’s hard
to tell why the C code crashed
– “Segmentation fault” isn’t a very good answer
– It’ll only get worse when we learn pointers

You can run your code through a debugger
and see why it crashed
Let’s try a simple example…

14

Bad code

int main(void) {
char c;
strcpy(c, “This is a test”);

}
OK, this looks obvious here, but if you have a
few hundred lines of code…
Not surprisingly, it crashes

15

gdb – the GNU debugger

First, compile your code with “-g”
– gcc -g -o test test.c

Then, run it with gdb
– gdb test

Common gdb commands
– run
– list – look at code
– bt – “backtrace” along the function call stack
– up/down – move among function call stack
– break – add a “breakpoint”

This is a whirlwind tour

6

16

gdb’s unfriendly?

Buy a commercial IDE
Or, try ddd, which is a graphical frontend to
gdb
– Lots of features – I’ll only scratch the surface in

my “tour”
You probably don’t need to use a debugger
for HW#3, but it’ll be important for later
homeworks

17

Midterm review…

Any specific questions, first?
Let’s run through the slides

