Introduction to Computer Science
W 1113 - Lab (C)
Lab 6

Janak J Parekh
3/3/04

Recap from Lab 5
G

e Function prototypes

e Functions

e Conditionals

e Loops

Agenda
G
e Elements for HW#3

- Variable scoping
- Two-dimensional arrays

e Good coding practices
e Debugging
e Midterm review...




Variable scope
G

e Variables can be declared in different parts of your
program, and this affects how they’re accessible

e Global variables are declared outside any function

e Local variables are declared inside a function, or any
arbitrary code block

e In C, local variables must be declared at the top of
the block

e The “closest” one in the same block takes
precedence

Example
G

#include<stdio.h>
inti=5;
int main(void) {
inti=10;
inti=12;
}
printf(“%d\n”, i);

e Yes, this is legitimate syntax! What's the answer?

A note on code blocks...
. |

e Be very careful in identifying code blocks; use {} and
proper indentation to keep your code clear
o [f-else if-else: note that the latter two are optional,
but should clearly correspond to the “original if” if
present... legitimate syntax:
if(a) {
if(b) { ... }
else{...}
}else{...}




Why global variables?
.|

e If you have some piece of information used
by lots of functions in the same program, no
need to pass them as variables if they're
already accessible

e However, be careful not to make everything
global

e We'll get more used to structuring data later
in the semester...

Permanent vs. temporary variables
G

e Book makes distinction — probably beyond
the “scope” of this class

e Modern computers have a much larger stack

e Unless you're doing very special stuff, don’t
worry about it

e static: The most confusing keyword in C,
ever

Two-dimensional arrays
G

e Easy to setup:
- int a[10][20];
- a[10][12] = 6;
- Might want to “zero out” the array initially... how?
e Special meaning with strings
- char strs[10][20];
- You can treat this as a 2D array of chars, or as a 1D array
of strings

- In the latter, how many strings, and how many chars in
each?

strepy(strs[3], “Hello world”);




Good coding practices
e —

e Comment!

e Proper variable, function naming
- In general, variables and functions have an initial
lowercase, uppercase later
- int numRecords = 0;
- Indentation is very important, especially in
keeping track of scope
e emacs will help you in this
e I've debugged people’s code just by indenting it!

10

Good coding practices (Il)

G
e Initial values for (most) variables
- inti=0;
- inta[10]={0}
- Especially important in C — no presumed default
e Avoid very long functions: split up
functionality

e Avoid overly complex logic if possible

11

Debugging tips
. |
e gcc -Wall
- Compile with “all warnings”
- Often can catch errors this way
- Sometimes will return some “optional” errors
e printf()

- When stuck, print out intermediate results as your
program runs

12




Using a debugger
e —

e Especially with C code that crashes, it's hard
to tell why the C code crashed
- “Segmentation fault” isn’t a very good answer
- It'll only get worse when we learn pointers

e You can run your code through a debugger
and see why it crashed

e Let's try a simple example...

13

Bad code
G
int main(void) {
char c;
strcpy(c, “This is a test”);
}

e OK, this looks obvious here, but if you have a
few hundred lines of code...

e Not surprisingly, it crashes

14

gdb —the GNU debugger
G

e First, compile your code with “-g”
- gce -g -o test test.c
e Then, run it with gdb
- gdb test
e Common gdb commands
- run
- list — look at code
- bt —“backtrace” along the function call stack
- up/down — move among function call stack
- break — add a “breakpoint”
e This is a whirlwind tour

15




gdb’s unfriendly?
e —

e Buy a commercial IDE
e Or, try ddd, which is a graphical frontend to
gdb

- Lots of features — I'll only scratch the surface in
my “tour”

e You probably don't need to use a debugger
for HW#3, but it'll be important for later
homeworks

16

Midterm review...
G ——

e Any specific questions, first?
e Let's run through the slides

17




