
1

Introduction to Computer Science
W 1113 – Lab (C)

Lab5

Suhit Gupta
2/26/04

2

Questions about the previous lab

3

Questions about HW2

2

4

Recap from Lab 3

Math operators
Arrays (assignment and reference)
Strings
– string manipulation
– fgets
– sscanf

5

Recap from Lab 4

Function prototypes
Conditional statements
– if
– switch

Loops
– while
– do while
– for

6

Quick quiz…

What does the following do in a for loop
– && or ||

What are double and long?

3

7

Function prototypes revisited

Usually, you declare variables before you can use
them

– similar with functions
– however, you can

declare a function prototype at the beginning of the program
define the actual function workings later on

Example
– int add (int a, int b);

This is important in HW2

8

Function prototypes – code I

#include <stdio.h>

int add (int first_number, int second_number) {
int total;

total = first_number + second_number;
return total;

}

int main(int argc, char *argv[]) {
int c, x, y;
x=atoi(argv[1]);
y=atoi(argv[2]);
c=add(x, y);
printf(“The total of %d and %d is %d\n”, x, y, c);

}

9

Function prototypes – code II

#include <stdio.h>

int add (int a, int b);

int main(int argc, char *argv[]) {
int c, x, y;
x=atoi(argv[1]);
y=atoi(argv[2]);
c=add(x, y);
printf(“The total of %d and %d is %d\n”, x, y, c);

}

int add (int first_number, int second_number) {
int total;

total = first_number + second_number;
return total;

}

4

10

Some more examples
#include <stdio.h>

//defining all my function prototypes
int add (int a, int b);
int minus (int a, int b);
int mult (int a, int b);
float div (int a, int b);

int main(int argc, char *argv[]) {
//defining all my variables
int addanswer, minusanswer, multanswer, x, y;
float divanswer;
//reading in all the input
x=atoi(argv[1]);
y=atoi(argv[2]);
//performing calculations and printing the result
addanswer=add(x, y);
minusanswer=minus(x,y);
multanswer=mult(x,y);
divanswer=div(x,y);
printf("The respective calculations of %d and %d are %d, %d, %d and %f\n", x, y, addanswer,

minusanswer, multanswer, divanswer);
}

//The add function
int add (int first_number, int second_number) {

int total;

total = first_number + second_number;
return total;

}

//The subtraction function
int minus (int first_number, int second_number) {

int total;

total = first_number - second_number;
return total;

}

//The multiplication function
int mult (int first_number, int second_number) {

int total;

total = first_number * second_number;
return total;

}

//The division function - note that this one returns a float
float div (int first_number, int second_number) {

float total;

total = (float) first_number / (float) second_number;
return total;

}

11

Here is a problem – use functions

Brainstorming (real world example)
– Planning your trip to Europe
– Changing currency during your Eurotrip
– Booking Flights
– Booking Hotel Room and/or Youth Hostels
– Sightseeing
– Look up the weather

What are the different methods?

12

Conditionals revisited

Conditional statements
– if
– switch

5

13

Conditionals

Conditional statements
– if

need to know <, >, ==, !=, <=, >=
&&, ||
usage: if (expr) {stmt…}

else if (expr) {stmt…}
else {stmt}

when do you not need {}
– if followed by another if

if (something) do something;
if (something else) do something else;

– The default case is the final else
– Correctness

if (strcmp(string1, string2)) do something?
if (strcmp(string1, string2)==0) do something?

14

Conditionals II

Switch
switch (val) {

case 1:
do some work;
break;

case 2:
do some work; // you don’t have to necessarily have
break; // stuff here

case 3:
do some work;
break;

default: //if needed
do some work;
break;

}
What is the break statement?
What happens if you don’t use break?

15

Loops

Iteration/loops
– While
– For
– Do while

Difference between conditionals and loops

6

16

Loops II

While
– usage:

while (cond) {stmt…}
– break;
– continue;

code
while(current_number<100) {

do something; //what is wrong
}

17

Loops II

While
– usage:

while (cond) {stmt…}
– break;
– continue;

code
while(current_number<100) {

do something; //what is wrong
i++; // or i-- as the case may be

}

18

Loops III

Do while
– usage:

do {
blah;

} while (i>0);

– Again, remember that the value of ‘i’ needs to be
changed

7

19

Loops IV

For
– usage:

for (initial statement ; condition ; iteration statement) {
do something here;

}
– There is other acceptable syntax (sort of)

BTW, this is where the ++i and i++ becomes relevant
and useful
Everything in for can be done in a while

– Think about it

20

Loops V

The comma operator
– Things are evaluated from left to right

for (sum=0, i=1; i<=n; ++i)
sum += i;

for (sum=0, i=1; i<=n; sum += i, ++i)
;

for (sum=0, i=1; i<=n; ++i, sum += i)
; // this may give wrong results as i is

// incremented before added to sum

21

Loops VI

Why can we use the ; just like that
Infinite loops – beware
– while (1) { …}
– for (; ;) {…}

Use it at your own risk (system administrator may kill ;-))
Use it instead of running your program again and again

8

22

What does the following do?

for (i = 1; i <= 10; ++i)
;

sum += i;

23

Back to the Europe Trip example

Now that we know loops, how would we use
them to call our methods nicely

24

Assignment

Read Ch. 8 and 9 from the Practical C
Programming book
Start reading Ch. 7

HW2
– Due soon.

