CS1003/1004:
Intro to CS, Spring 2004

Lecture #14: AI, Computation Theory, The End

Janak] Parekh
janak@cs.columbia.edu

Administrivia
m HW#6 due next Wednesday — work on it!

m Maryam out this week

m William will be teaching her lectures and covering
Thursday’s OH

m We'll cover her OH next Monday as well
m OH requests next week?
m Review sessions — Tues. and Thurs.

® Room to be finalized; will send email

m Got preferences?

m Grades are up, please check them out ASAP

Al continued: Robotics/vision

m Historically focused on mechanical and electrical
engineering aspects
m We can already do set tasks, but what about
modifications?
m Objects on a conveyor belt at irregular intervals/orientation
m Navigate around a room with obstructions
m Need to take images of scenes, compute boundaries,
detemine paths

m Goal: autonomous robots

Database/expert systems

m Context drives a huge problem: how to encode
context and knowledge that the human mind
possesses, and retrieve said information?

m “Associative memoty systems”

m Web search is just a start — just keyword-based
searching so far, not semantic-based searching

m Expert systems: encode domain-specific
knowledge to help solve problems

Weak vs. Strong Al

m All of these applications are essentially weak: we
tell the computer what to do, and we solve
problems

m Not really “Al”, per se — useful solutions to solve
real-world problems

m [s Strong Al i.e., sentience/consciousness,
possible?

m If so, we’re still quite a long way away
m On the other hand, there’s the Turing test. ..

So... what can’t computers do?

m (Or, can we summarize what caz they do?)

m Given all that we’ve learned this semester, it’s
actually pretty hard to characterize

m Focus of computation theory is to determine what is
computable and what is not

m Computable implies functions whose output values
can be determined algorithmically from their input
values

m So, what’s an example of a noncomputable function?

Formalizing computability

m Several popular ways
m (Finite) state machines
m Turing machines
m State machines are a sort of like a flowchart
m One starts at a “start state”, goal is to get to the “end” or
“goal” state
m State fransitions specify what to do based on initial input
m States represent the “current” computer’s state
m Simple example: build a state machine to match the string
“Hello!”
m Problem: intermediate storage?

Turing machine

m A state machine on steroids

m Idea: not only do we have szate, but we have storage

m Alan Turing modeled the storage as a “paper tape” in 1936

m The tape is manipulated by a read/write head that can move left
and right one space

Control
unit

J'/Readfwrite head

y 3

AR AL
[TTTTTTTTTTT Jom
e i

Simple Turing example

m Add one to a number already encoded on tape

m We encode it as a binary number, and surround it with
the start/end states (“*)
m Let’s do this on the board...

Current state Current cell Valua Direction to move New state
content o write

to enter
START . . Lot ADD
ADD o 1 Right RETURN
ADD 1] Left CARRY
ADD e . Right HALT
CARRY 0 1 Right RETURN
CARRY 1 0 Latkt
CARRY . 1 Laft AF
OVERFLOW . . Aight RETURN
RETURN 0 0 Right RETURN
RETURN 1 1 Right RETURN
RETURN i . No move HALS

So why bother with Turing?

m Church-Turing thesis: the set of Turing
functions is the same as the set of functions that
are computable in general!

m Although some may look really awkward in a Turing
machine

m Widely accepted by computer scientists today

m A language is Turing-complete if it can encode all
that a Turing machine can do
m Both C and Java are Turing-complete

Noncomputability, redux

m So, noncomputable functions can’t be modeled
as a Turing machine

m How do we demonstrate?
m Not that trivial, beyond scope of class

= Most famous noncomputable function: Wi/l a

specified program halt?

The “halting problem”

m In short, we cannot compute whether or not a
computer program written in a Turing-complete
programming language will run to completion or
not!

m Note that the program itselfis “input” into this
noncomputable function (e.g., willHalt(...))

m Informal proof is in book; strictly optional (but
you may find it interesting)

m Bare-Bones also optional

Classes of computable functions

m We typically break them down by the time they take to
run; here are some typical values that we’ve seen:

y=n
s
y=n -
v V4 ¥ ;
y=lgn S y=nlgn
p / -
S /
v -
n n
a. nversus g n b. n? versus nlg n

“Bad” computable functions

m Those that, for any implementation, take
exponential time

m For sufficient #, these problems take so long to
run that no matter how fast your computer is,
it'll still take practically forever

m What's scary, though, is that there is (currently)
no way of proving that there is o faster way of
computing it

m While recursive Fibonacci is bad, iterative is not

So...

m We call such functions for which we know no better
way to be “nondeterministic polynomial”, or NP
m Typically exponential
m We care because lots of useful problems fall into this
category

Solvable problems Unsolvable problems
1 1
I L]
NP problems
|
| L ‘ A ‘

\] \
Poly 1 Nenpoly ial
\ problems problems

How does one “prove” NP?

® You show that one non-polynomial problem
reduces into another non-polynomial problem

m NP-complete problem

m Can’t do for all NP problems, but for many of them

m [t’s a “weak” proof: if one were to demonstrate that
there exists a polynomial-time algorithm for a7 least
one non-polynomial problem, 2// NP problems are
automatically “P”

m Prove “P=NP”: Insta-Nobel Prize. Guaranteed!

In fact, NP is “useful”

m Public-key encryption (e.g., SSL/ssh) largely works on
the fact that decrypting an encrypted message takes an
extraordinarily long time

m Details beyond scope of class

m If someone were to prove that P=NP, many of today’s
encryption algorithms would have to be thrown out the
window

m Portunately, no one has come close to proving it

m But no one has come close to proving the opposite
either

So where do we go from here?

m Most computer scientists (except great
theoreticians) focus on making new computable
algorithms, hopefully in polynomial time

m With the knowledge you’ve learned in this class,
you have the pieces to go ahead and build such
algorithms, and code them

m Remaining CS classes introduce advanced
concepts, but they still boil down to the same
thing

Next time

m No next time ®
m In labs:
m C — Modularity, Makefiles
m Java — packaging, Java API
m Final two weeks from today
m Wait! We’re not finished

Final

m Structure: very similar to midterm, about 50%
longer — so you shouldn’t need all three hours

m [will put up a reading list by the end of this
week that will cover section reading in great
detail

m Will tweak slides to remove stuff we didn’t get to in
class...

m Review sessions next week: they’ll be open-

ended, so bring questions!

Feedback

m This class, as I said at the beginning, is
experimental
m Please fill out the SEAS Oracle survey
m http://oracle.seas.columbia.edu
® You can win an iPod!
m But let’s also discuss the class now
m I’m writing a report, and what you tell me can help

m Final exam bonus anonymous survey?

Thank you!

® You guys have been a great audience.
m | hope you found this class rewarding.

m Good luck with the rest of your Computer
Science mini-careers!
m And with finals

m Don’t forget review sessions next week

