CS1003/1004:
 Intro to CS, Spring 2004

Lecture \#13: Networks, AI
Janak J Parekh
janak@.cs.columbia.edu

Administrivia

\qquad

- HW\#5 due today
- HW\#6 out tonight
- Homework topics feedback?
- It's not always easy coming up with "interesting stuff' that isn't very hard.
- Maryam will be out next week
- William will be teaching her lectures
- There may be some OH rescheduling, so be sure to check the webboard
- Grades \qquad
- Review session?

IP addressing

\qquad

- IPv4: "dotted-quad notation" \qquad
- Each machine has an address of the form xxx.yyy.zzz.www
- Many "restricted" addresses
- DNS (domain name service) maps a name to an IP address \qquad
- chambers.psl.cs.columbia.edu \rightarrow 128.59.14.155
- LANs typically have contiguous IP addresses \qquad
- Columbia (wired): 128.59.*.*
- Columbia (wireless): 160.39.*.*
- We're getting slowly more fragmented \qquad
- Routers "route" packets between one LAN to another based on addresses and a "routing table" \qquad
\qquad

IP "packets"

- A packet is a bag of data, typically up to 1500 bytes \qquad
- Contains some beaders specifying things like source and destination, and some data \qquad
- The Internet is a "packet-switched" network
- TCP (Transmission Control Protocol) is one protocol \qquad that takes large amount of data to be sent and breaks them up into these small packets
- TCP/IP - the most common combination (RFC 793)
- I can take a look at the packets if I'm bored... \qquad
\qquad

What services run on the Internet?

\qquad

- E-mail: specified by its own protocols
- SMTP (RFC 821, 2821) - Specifies how to transfer email from a source to a destination via a chain of mail servers
- POP3/IMAP are simply retrieval protocols to retrieve your mail from a mailbox
- Web: two main standards \qquad
- HTTP: Hypertext Transfer Protocol (RFC 2616)
- HTML: Hypertext Markup Language
- Both work over TCP/IP
- "Stacking" protocols on top of each other
- Port abstraction to separate services over TCP/IP

Other services

- Telnet: simple text over TCP/IP
- In fact, I can telnet to an HTTP server and talk HTTP or SMTP if I know how to
- FTP: File Transfer Protocol
- ssh: like telnet, but encrypted for security's sake
- I can actually read the data typed over telnet or ftp using tcpdump... if I'm root or have control over a switch
- Others?
- kazaa, IRC, AIM, MSN, you name it
- Worms
- Once you learn more, you can make your own
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

So how do you stay secure?

- Effective password management
- Change your passwords every so often
- Don't use your last name as the password
\qquad

Use secure protocols

- These use encryption, which makes it difficult for a third-party
- SSL, ssh are two of several out there
- Don't run random programs on your computer
- Viruses and spyware can do network traffic communication behind your back, and convey your own data to other parties

What does this mean for you?

- OSes and networks are the context of all the work we do with computers nowadays
- If you program in the future, you'll likely have to interact with both in a more involved form
- Both C and Java have ways of communicating with the operating system and with other computers on LANs and the Internet, so you can write your own Kazaa's or webbrowsers...

Transition...

- We've already talked about... \qquad
- Hardware basics
- Software basics \qquad
- Systems and networks
- How to build solutions from these (albeit simple)
\qquad
- This and the next lecture talk about more openended areas of Computer Science
- But still very legitimate!
\qquad
\qquad
\qquad

Artificial Intelligence

- Perhaps one of the most misunderstood Computer Science concepts
- "... to develop machines that communicate with their environments through traditionally human sensors means and proceed intelligently without human intervention."
- In other words:
- Algorithms to understand human communication
- Algorithms to process information unattended

■ Once something "works", it's no longer "AI"

- Voice recognition is here, and it works (mostly)

What's an AI?

\qquad

- In order to accomplish the task, do we just use a clever combination standard computing algorithms (performance), or do we actually try to "model" the \qquad mind (simulation)?
- Is intelligence measured by the ability to win (at a game) \qquad or to be humanlike?
- Turing test
- Turing supposed that by the year 2000, machines would have
\qquad a 30% chance of passing a 5 -minute Turing test
- DOCTOR/ELIZA: free copy in emacs! \qquad
\qquad

Various AI methodologies

- Reasoning/production systems \qquad
- Neural networks
- Genetic algorithms
- Natural language processing \qquad
- Robotics, vision
- Databases/expert systems \qquad
\qquad
\qquad

Reasoning

- Common problem domain - the 8-puzzle
- There are 181,440 different configurations of the 8-puzzle
- Given a random configuration, can we compute the moves
 necessary to restore to this state?

A large search problem

\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

"Production system"

- Consists of three things: \qquad

1. A number of states
2. A number of productions or rules to transition between states
3. A control system to decide which rule to follow

- Given these elements, the problem reduces to a search problem
- One way of modeling this is a search tree, consisting of part of the state graph
\qquad
\qquad
\qquad
\qquad
\qquad

Search tree for 9-puzzle

- This is just a partial search tree
- Represents one initial configuration
- Goal: to traverse the tree quickly enough and find the correct state
- Problem: tree can be very "wide"

Search tree for Tic-Tac-Toe

- Again, partial search tree

Search strategies

- Breadth-first
- Look at the first row, then the second row, then the third row...
- Depth-first
- Go all the way to one leaf, then backtrack and resume
- Heuristic
- Have a special piece of code that "tells" you a preferred choice
- A directed search - not always foolproof, but reduces amount of nodes searched
- For 8-puzzle: "\# of tiles out of place" - take move that minimizes this value
- User might be the first move, followed by a computer move, etc.
- Goal: find a winning state
- Problem reduced to a data structure and a set of search algorithms
- Still many choices...

\quad Search strategies
■ Breadth-first
- Look at the first row, then the second row, then the third
row...
- Depth-first
- Go all the way to one leaf, then backtrack and resume
- Heuristic
- Have a special piece of code that "tells" you a preferred
choice
- A directed search - not always foolproof, but reduces
amount of nodes searched
- For 8-puzzle: "\# of tiles out of place" - take move that
minimizes this value

\qquad

Neural networks

- Idea modeled after neurons \qquad
- Given some inputs and a configuration, the neuron fires with the appropriate stimuli \qquad
- Neurons may "learn" which stimuli to fire on

Artificial neural networks

- Difference: we use numbers, not electrical impulses \qquad
- "Compute effective unit" uses weights w_{x}
- Goal: arrange a network of these that produces the \qquad result that we want, and adjust the weights so it gives the correct answer \qquad

Artificial neural networks (II)

- Challenge: Given such networks, we don't want to adjust the weights manually
- A technique called backpropagation allows the machine to be given "training
 weights to match the desired output
- Example: face, voice
 recognition

Genetic Algorithms

- Have programs evolve; mix-and-match them to \qquad produce the best result
- Common in building game players: mix-and-match players to produce desirable output
- Need a very focused language that you can \qquad "mix-and-match"
- Generally a very slow process to evolve

Natural Language Processing

\qquad

- Syntactic analysis
- Apply grammar rules
- For example, identify the subject of the sentence "Mary gave John a birthday card." \qquad
- Semantic analysis
- Identify the semantic role of each word, i.e., action, agent of action, object of action
- Contextual analysis
- "I ate a bag of chips."
- Applications
- Information retrieval and information extraction
- Particularly important for web-based applications

Robotics/vision

- Historically focused on mechanical and electrical \qquad engineering aspects
- We can already do set tasks, but what about modifications?
- Objects on a conveyor belt at irregular intervals/orientation \qquad
- Navigate around a room with obstructions
- Need to take images of scenes, compute boundaries, \qquad detemine paths
- Goal: autonomous robots \qquad
\qquad

Database/expert systems

- Context drives a huge problem: how to encode context and knowledge that the human mind possesses, and retrieve said information?
\qquad
"Associative memory systems"
- Web search is just a start - keyword-based searching, not semantic-based searching
- Expert systems: encode domain-specific knowledge to help solve problems

Weak vs. Strong AI

\qquad

- All of these applications are essentially weak: we \qquad tell the computer what to do, and we solve problems
- Not really "AI", per se - useful solutions to solve real-world problems
- Is Strong AI, i.e., sentience/consciousness, possible?
- If so, we're still quite a long way away
- On the other hand, there's the Turing test

Next time

- In labs: \qquad
- C - File I/O
- Java - GUI-based event programming \qquad
- Last lecture: computation theory \qquad
\qquad
\qquad
\qquad

