Administrivia

- Three weeks left in the semester!
- HW#5 due next Tuesday
 - If you have not started already… you’d better start today
 - Don’t expect to write the programming up over a weekend
- Thanks to Suhit for teaching last week
 - How was he? ;)

The big picture
The big picture (II)

- Given hardware and compiled (machine) code, you can run it directly, but that’s a huge hassle
- What if you want to run multiple programs?
- If so, how do we share resources between programs?
- How do we let the user manipulate various programs?
- How do we let multiple users manipulate various programs?
- Solution: employ a special piece of software that allows multiple user applications/tasks to cooperate

History of operating systems

- Batch processing: back in the single-task days, people would submit jobs to the computer for the entire company, and wait in line for their job to be done
- Used a queue abstraction to handle the job list
- No interactivity – submit job, wait for results
- Very cumbersome for iterative development
- Interactive processing
 - Allow the user to interact
 - Still had to wait for your shot to use the computer
 - Anyone remember DOS?
- Modern OSes multitask

Operating systems

- Considered system software, as compared to application software
 - The latter run as processes alongside an OS
- Two major components:
 - A kernel, which handles resource management, multitasking, etc. in the background;
 - A shell, which provides a user frontend to the operating system
Kernels

- Several important components
 - Device drivers: used to enable the OS to communicate with computer hardware
 - Device drivers abstract the hardware away from the OS, so that you can “plug-in” new drivers
 - Memory manager: Keeps track of computer’s memory allocation per process; also supports virtual memory, which enables the use of hard disks as additional memory
 - Scheduler: Control what tasks are running on the processor at any given time
 - Network stack: Provides networking facilities

The Linux kernel

- Popular learning kernel, since it’s open source
- You can grab your own copy from www.kernel.org, if you want to take a look
- A Linux operating system distribution (like Red Hat) consists of the Linux kernel and a bunch of tools (including GNU tools)
- Here’s the directory structure of the kernel…
Multitasking

- Given multiple processes, coordinate them so that they can run concurrently.
- Well, not concurrently – the CPU handles a fixed number of instructions at any given time.
- Instead, timeslice, so that each process does a little work at a time, and keep on switching.
- Operating system keeps separate register sets, etc. for each application, and magically handles them cleanly for you.
- “Virtual machine”: As an application designer, you feel like you have control over the machine, but the OS is actually managing many such processes.

Multitasking (II)

How do you multitask in UNIX?

- The “&” operator
 - “emacs &” starts up emacs as a background process
 - Lets you continue to use the shell while running emacs in its own window
 - “jobs” lists the currently running jobs in the background
- Or… multiple ssh sessions
- The machine is actually handling all of these user sessions in parallel as collections of processes
- UNIX is multitier, unlike older client versions of Windows
Multiuser and other trivia

- By being multiuser, UNIX must worry about user accounts, passwords, and permissions
 - "root" administrative UNIX account (like Windows "Administrator" user)
 - "w" or "finger" will list the currently logged-in users on the current machine
 - Note that UNIX is a cluster of machines, not just one machine
- "ps" lists the processes on a machine
 - "ps aux" (Linux/BSD) or "ps -ef" (Solaris/SysV)
 - "top" lists most active processes on a machine
- "kill" kills a process

Process competition?

- What if two different processes need to access the same resource?
 - In the old days, if two programs want to print, you’d get a printout that was a mix of both
 - Now, a print spooler coordinates output and keeps them separate
 - The OS is responsible for handling such race conditions between processes

Process competition (II)

- More complicated resource contention requires locking; concept is similar to the barriers at a train track crossing
 - Semaphores == fancy locks
 - Avoid deadlock:
Networks

- Now that we’ve discussed all the pieces on one computer, let’s talk about networking computers together.
- More and more computing solutions are distributed across networks.
- Several different kinds:
 - LAN (Local Area Network)
 - WAN (Wide Area Network)

LANs

- Most common LAN architecture today is Ethernet.
- 10BASE-T/100BASE-T Ethernet uses telephone-like wire to network computers together.
- Very cheap, and popular (“CAT 5” wiring).
- Topology: how to organize these networks?
 - Typically a hierarchical star topology nowadays.
 - Columbia’s network is a hybrid of Ethernet and fiber.

WANs

- Typically collections of LANs, with high-speed telecommunications links connecting them together.
- POTS (plain old telephone system): typically < 56kbps
- DSL/cable: typically 128kbps-1.5Mbps
- T1: 1.544Mbps
- T3: 45Mbps
- OC3: 155Mbps
- OC12: 622Mbps
- Columbia has an OC3 to the commodity Internet.
- not enough…
The Internet

- A very, very large WAN
 - Extremely complicated
 - “The Internet has a diameter of 10,000 pookies”
- Active research as how to accurately map Internet topography
- We just had a Ph.D. student come yesterday as a faculty candidate talk on this very topic

So how does the Internet work?

- On top of a series of network protocols that define how computers should talk to each other
- Internet Protocol (IP) is the most important
 - Current one (IPv4) was made over 20 years ago(!)
 - Next version is IPv6: “coming soon”
- Describes how computers should be addressed, how to route between networks, and how to carry data
IP addressing

- IPv4: “dotted-quad notation”
 - Each machine has an address of the form xxx.yyy.zzz.www
 - Many “restricted” addresses
 - DNS (domain name service) maps a name to an IP address
- LANs typically have contiguous IP addresses
 - Columbia (wired): 128.59.*.*
 - Columbia (wireless): 160.39.*.*
 - We’re getting slowly more fragmented
- Routers “route” packets between one LAN to another based on addresses and a “routing table”

IP “packets”

- A packet is a bag of data, typically up to 1500 bytes
- Contains some headers specifying things like source and destination, and some data
- The Internet is a “packet-switched” network
- TCP (Transmission Control Protocol) is one protocol that takes large amount of data to be sent and breaks them up into these small packets
- TCP/IP – the most common combination (RFC 793)
- I can take a look at the packets if I’m bored…

What services run on the Internet?

- E-mail: specified by its own protocols
 - SMTP (RFC 821, 2821) – Specifies how to transfer email from a source to a destination via a chain of mail servers
 - POP3/IMAP are simply retrieval protocols to retrieve your mail from a mailbox
- Web: two main standards
 - HTTP: Hypertext Transfer Protocol (RFC 2616)
 - HTML: Hypertext Markup Language
- Both work over TCP/IP
 - “Stacking” protocols on top of each other
 - Port abstraction to separate services over TCP/IP
Other services

- Telnet: simple text over TCP/IP
 - In fact, I can telnet to an HTTP server and talk HTTP or SMTP if I know how to
- FTP: File Transfer Protocol
- ssh: like telnet, but encrypted for security’s sake
 - I can actually read the data typed over telnet or ftp using tcpdump… if I’m root or have control over a switch
- Others?
 - kazaa, AIM, MSN, you name it
 - Once you learn more, you can make your own

So how do you stay secure?

- Effective password management
 - Change your passwords every so often
 - Don’t use your last name as the password
- Use secure protocols
 - These use encryption, which makes it difficult for a third-party
 - SSL, ssh are two of several out there
- Don’t run random programs on your computer
 - Viruses and spyware can do network traffic communication behind your back, and convey your own data to other parties

What does this mean for you?

- OSes and networks are the context of all the work we do with computers nowadays
- If you program in the future, you’ll likely have to interact with both in a more involved form
- Both C and Java have ways of communicating with the operating system and with other computers on LANs and the Internet, so you can write your own Kazaa’s or webbrowsers…
Next time

- In labs:
 - C – more pointers and structs
 - Java – basic graphics programming
- *Make sure to come to us with questions this week*
- Lecture: basic AI concepts