CS1003/1004:
Intro to CS, Spring 2004
Lecture #12: OS & Networks

Janak J Parekh
janak@cs.columbia.edu

Administrivia
m Three weeks left in the semester!

m HW#5 due next Tuesday

m If you have not started already... you’d better start
today

m Don’t expect to write the programming up over a
weekend

m Thanks to Suhit for teaching last week

m How was he? ;-)

The big picture

Application

Instruction Set
Architecture

]
Instr. Set Proc. 1/0 system

‘ Datapath & Control ‘

‘ Digital Design ‘

Circuit Design




The big picture (II)

m Given hardware and compiled (machine) code, you can
run it directly, but that’s a huge hassle
m What if you want to run multiple programs?
m If 50, how do we share resources between programs?
m How do we let the user manipulate various programs?
m How do we let multiple users manipulate various programs?
m Solution: employ a special piece of software that allows
multiple user applications/tasks to cooperate

History of operating systems

w Barch processing: back in the single-task days, people
would submit jobs to the computer for the entire
company, and wait in line for their job to be done

m Used a guene abstraction to handle the job list
= No interactivity — submit job, wait for results
m Very cumbersome for iterative development
m Interactive processing
= Allow the user to interact
m Still had to wait for your shot to use the computer
m Anyone remember DOS?
m Modern OSes multitask

Operating systems

m Considered system software, as compared to
application software
m The latter run as processes alongside an OS
= T'wo major components:
m A kernel, which handles resource management,
multitasking, etc. in the background;
m A shell, which provides a user frontend to the
operating system




Kernels

m Several important components

m Device drivers: used to enable the OS to communicate with

computer hardware
m Device drivers abstract the hardware away from the OS, so that you
can “plug-in” new drivers

u Memory manager: Keeps track of computer’s memory allocation
pet process; also supports virtnal memory, which enables the
use of hard disks as additional memory

u Scheduler: Control what tasks are running on the processor at
any given time

m Network stack: Provides networking facilities

The Linux kernel

m Popular learning kernel, since it’s open source

m You can grab your own copy from
www.kernel.org, if you want to take a look

m A Linux operating system distribution (like Red
Hat) consists of the Linux kerne/ and a bunch of
tools (including GNU tools)

m Here’s the directory structure of the kernel. ..

et ’
[ ————
=] (5] o] [
= ] 5]
e
SE
[ ] it |
b ink
2] ] ) o) ] [ (3]
,
5 Lot )

— ]




Multitasking

m Given multiple processes, coordinate them so that they
can run concurrently

m Well, not concurrently — the CPU handles a fixed
number of instructions at any given time
m Instead, zmeslice, so that each process does a little work at a
time, and keep on switching
m Operating system keeps separate register sets, etc. for each
application, and magically handles them cleanly for you

m “Virtual machine”: As an application designer, you fee/ like
you have control over the machine, but the OS is actually
managing many such processes

Multitasking (II)

Interrupt Intarrupt Interrupt Interrugpt Intarrupt

Process B Process B i Proc
- 1 -

s

Advancing
tme i + i i b i i ‘ —
Timeslice Timeslice Timeslice Timeslice

How do you multitask in UNIX?

m The “&” operator
m “emacs &” starts up emacs as a background process
m Lets you continue to use the shell while running emacs in its
own window
m “jobs” lists the currently running jobs in the background
m Or... multiple ssh sessions
m The machine is actually handling all of these user
sessions in parallel as collections of processes

m UNIX is multiuser, unlike older client versions of Windows




Multiuser and other trivia

m By being multiuser, UNIX must worry about user
accounts, passwords, and permissions
m g0t administrative UNIX account (like Windows
“Administrator” user)

m “w” or “finger” will list the currently logged-in users on
the current machine

m Note that CUNIX is a ¢/uster of machines, not just one
machine

m “ps” lists the processes on a machine
m “ps auxw” (Linux/BSD) or “ps —ef” (Solaris/SysV)
m top lists most active processes on a machine

m “kill” kills a process

Process competition?

m What if two different processes need to access
the same resource?
m In the old days, if two programs want to print, you’d

get a printout that was a mix of both

m Now, a print spooler coordinates output and keeps
them separate

m The OS is responsible for handling such race
condjtions between processes

Process competition (II)

m More complicated resource contention requires
locking; concept is similar to the barriers at a train
track crossing

m Semaphores == fancy locks

m Avoid deadlock:




Networks

m Now that we’ve discussed all the pieces on oze
computer, let’s talk about networking computers
together

m More and more computing solutions are
distributed across networks

m Several different kinds:

m LAN (Local Area Network)
m WAN (Wide Area Network)

LANs

m Most common LAN architecture today is
Ethernet

= 10BASE-T/100BASE-T Ethetnet use
telephone-like wire to network computers
together
m Very cheap, and popular (“CAT 5” wiring)

m Topology: how to organize these networks?
m Typically a hierarchical star topology nowadays
m Columbia’s network is a hybrid of Ethernet and fiber

WANSs

m Typically collections of LANSs, with high-speed
telecommunications links connecting them together
m POTS (plain old telephone system): typically < 56kbps
m DSL/cable: typically 128kbps-1.5Mbps
= T1: 1.544Mbps
m T3: 45Mbps
m OC3: 155Mbps
m OC12: 622Mbps
m Columbia has an OC3 to the commodity Internet

m not enough...




The Internet

Domain

."/.’ i

Regional \

o network of |
Domain - gateways |
\

Domain
NG

Domain

The Internet

m A very, very large WAN

m http://research.lumeta.com/ches/map/gallery/i
ndex.html
m Exctremely complicated
m “The Internet has a diameter of 10,000 pookies”

m Active research as how to accurately map
Internet topography

m We just had a Ph.D. student come yesterday as a
faculty candidate talk on this very topic

So how does the Internet work?

m On top of a series of network protocols that define
how computers should talk to each other
m Internet Protocol (IP) is the most important
m Current one (IPv4) was made over 20 years ago(!)
m http://www.ietf.org/rfc/rfc0791.txt
m Next version is IPv6: “coming soon”

m Describes how computers should be addressed,
how to route between networks, and how to
carry data




IP addressing

m [Pv4: “dotted-quad notation”
m Each machine has an address of the form xxx.yyy.zzz.www
m Many “restricted” addresses
m DNS (domain name service) maps a name to an IP address
m chambers.psl.cs.columbia.edu =» 128.59.14.155
m LANS typically have contiguous IP addresses
m Columbia (wired): 128.59.% *
m Columbia (wireless): 160.39.%.*
m We're getting slowly more fragmented
m Routers “route” packets between one LAN to another
based on addresses and a “routing table”

IP “packets”

A packet is a bag of data, typically up to 1500 bytes

Contains some headers specifying things like source and
destination, and some data

The Internet is a “packet-switched” network

TCP (Transmission Control Protocol) is one protocol
that takes large amount of data to be sent and breaks
them up into these small packets

TCP/IP — the most common combination (RFC 793)

m | can take a look at the packets if I'm bored...

What services run on the Internet?

m E-mail: specified by its own protocols
m SMTP (RFC 821, 2821) — Specifies how to transfer email

from a soutce to a destination via a chain of mail servers
m POP3/IMAP are simply refrieval protocols to retrieve your
mail from a mailbox
m Web: two main standards
m HTTP: Hypertext Transfer Protocol (RFC 2616)
m HTML: Hypertext Markup Language
m Both work over TCP/IP
m “Stacking” protocols on top of each other
m Port abstraction to separate services over TCP/IP




Other services

m Telnet: simple text over TCP/IP

m In fact, I can telnet to an HTTP server and talk HTTP or
SMTP if I know how to

m FTP: File Transfer Protocol

m ssh: like telnet, but encrypted for security’s sake

m I can actually read the data typed over telnet or ftp using
tepdump... if I'm root or have control over a switch

m Others?
m kazaa, AIM, MSN, you name it

m Once you learn more, you can make your own

So how do you stay secure?

m Effective password management
m Change your passwords every so often
m Don’t use your last name as the password
m Use secure protocols
m These use encryption, which makes it difficult for a third-party
m SSL, ssh are two of several out there
= Don’t run random programs on your computer

m Viruses and spyware can do network traffic communication
behind your back, and convey your own data to other parties

What does this mean for you?

m OSes and networks are the context of all the
work we do with computers nowadays

m If you program in the future, you’ll likely have to
interact with both in a more involved form

m Both C and Java have ways of communicating
with the operating system and with other
computers on LANs and the Internet, so you
can wtite your own Kazaa’s or webbrowsers...




Next time

m In labs:
m C — more pointers and structs
m Java — basic graphics programming

m Make sure to come to us with questions this
week

m Lecture: basic Al concepts

10



