Administrivia

- HW#4 due today
- Janak’s office hours today
 - Rob and I will be available
- Reiteration of plagiarism policy
 - VERY SERIOUS
 - I recommend sending email to Janak

Computer Architecture

- In this class, you are studying software
- But how does this relate to the hardware in your machine
- Two aspects
 - At the “macro” level, how is the computer organized
 - At the “micro” level, what is the architecture of each component
The Macro - The Computer

The Micro – The Motherboard & The Processor

Computer Architecture in Software Perspective
The CPU

- CPU = Central Processing Unit
 - consists of two parts
 - ALU – Arithmetic Logic Unit
 - Control Unit
 - The CPU contains talks to the machine memory (RAM) and the system cache, but it also has internal memory called registers

The CPU-Memory Relationship & Hierarchy

Chip Architecture (MIPS)
So how does software run on a machine?

The CPU only understands machine instructions and computes 1's and 0's.

Therefore, something has to convert it to machine language – enter “compiler.”

The compiler converts high-level code into machine code (this is why you have machine-specific compilers).

- RISC – Reduced Instruction Set Computer
 - machines are efficient and fast
 - limited
 - code density is awful
 - examples: MIPS, DLX, (ARM/Thumb)

- CISC – Complex Instruction Set Computer
 - complex and slower (to some extent)
 - code density is excellent
 - examples: Intel, PowerPC, (ARM/Thumb)

Machine language – series of instructions that have been converted from some higher level language

- it is something that the processor understands.

machine instruction

<table>
<thead>
<tr>
<th>opcode</th>
<th>Rs</th>
<th>Rd</th>
<th>Rt</th>
<th>extra bits</th>
</tr>
</thead>
</table>

Machine instruction consists of opcode (operation code) and a number of operand fields.

In C/Java, a simple piece of code to search for k in an array would look like:

```c
while (array[i] == k)
    i++;
```

In MIPS assembly language, it would look like:

```
Loop: mult $9, $19, $10 ; Initialize i
lw $8, iStart($9) ; Get value of array[i]
be $8, $21, Exit ; check if it is equal to k
add $19, $16, #1 ; i++
j Loop ; back into the loop
```

Exit:
Also included in the architecture

- Program counter
 - contains the address of the next instruction
- The machine cycle

Back to the Chip Architecture

Pipelining (using DLX assembly)

- Blocks of code are typically large
 - One cannot execute each instruction, one at a time
 - Therefore, execute them together?
 - Pipe them

```assembly
LOOP: 
    LW        R8, 0(R2)
    ADD       R10, R6, R8
    ADDI      R2, R10, #4
    SW        R10, 0(R2)
    ADDI      R3, R3, #4
    LW        R1, 100(R3)
    LW        R12, 100(R1)
    BGTZ      R12, LOOP
    LOOP: 
    LW        R8, 0(R2)
    ADD       R10, R6, R8
    ADDI      R2, R10, #4
```
Communication via controllers

- Communication between a computer and other devices is typically handled through an intermediary device called a controller.
- A controller converts messages and data back and forth for compatibility.
- Each controller is assigned unique addresses.
 - Set of addresses assigned is called a port.
- Memory mapped I/O
- Direct Memory Access (DMA)
 - Wonderful for performance.
- Von Neumann bottleneck
 - CPU and controllers, both trying to access the machine bus.

Multiprocessor machines

- Pipelining can be viewed as the first step towards supporting multiple processors (parallel processing).
- Common pitfall: multiple processors is different from multiple processes.
- Common design pitfall: throw lots of workers at a task and it will get done faster.
 - Works with extreme delicacy in Software Engineering.
 - Works better in hardware but makes design much harder.
Advanced concepts

- SISD – Single Instruction, Single Data
 - typical of what we have seen so far
- MIMD – Multiple Instruction, Multiple Data
 - in multiple processor machines, one processor can store the program information, then call on another processor to complete it
- SIMD – Single Instruction, Multiple Data
 - typically VLIW machines (Very Long Instruction Word)

Final thoughts and the next class...

- I cannot stress this the plagiarism policy more firmly than I already have
- Operating systems & networks
 - Read Chapter 3 of the Brooksheer book