CS1003/1004:
Intro to CS, Spring 2004

Lecture #11: Computer Architecture

Suhit Gupta
suhit@cs.columbia.edu
D

Administrivia
G
o HW#4 due today

e Janak’s office hours today
- Rob and | will be available

e Reiteration of plagiarism policy
- VERY SERIOUS
- | recommend sending email to Janak

Computer Architecture

. |
e In this class, you are studying software
e But how does this relate to the hardware in
your machine
e Two aspects
- At the “macro” level, how is the computer
organized
- At the “micro” level, what is the architecture of
each component

The Macro - The Computer

The Micro —
The Motherboard & The Processor

Computer Architecture in Software
Perspective

Application

Operating
System

Firmware

! ‘ Instr. Set Proc. ‘ /10 system‘

Compiler

, Instruction Set
Architecture

Datapath & Control

Digital Design
Circuit Design

The CPU

e CPU = Central Processing Unit

- consists of two parts
e ALU — Arithmetic Logic Unit
e Control Unit

e The CPU contains talks to the machine
memory (RAM) and the system cache, but it

also has internal memory called registers

The CPU-Memory Relationship &
Hierarchy

oooo

—C |0

Chip Architecture (MIPS)

CPL Central Processing Unit

R1

R1

Instruction Set
. |

e So how does software run on a machine
e The CPU only understand machine instructions and computes
I'sand 0's
- Therefore, something has to convert it to machine language —
enter “compiler”

e The compiler converts high level code into machine code (this is why
you have machine specific compilers)
- RISC - Reduced Instruction Set Computer
e machines are efficient and fast
o limited
e code density is awful
o examples: MIPS, DLX, (ARM/Thumb)
— CISC - Complex Instruction Set Computer
o complex and slower (to some extent)
e code density is excellent
o examples: Intel, PowerPC, (ARM/Thumb)

10

Machine Language
¢ |

e Machine language — series of instructions
that have been converted from some higher
level language
- itis something that the processor understands.

e machine instruction

[I I I I J
opcode Rs Rd Rt extra bits

e Machine instruction consists of opcode
(operation code) and a nhumber of operand
11 fields

Machine Language example
. |

e In C/Java, a simple piece of code to search for k in an array
would look like

while (array[i] == k)
i++;

e In MIPS assembly language, it would look like

Loop: mult $9, $19, $10 ; Initialize i
Iw $8, Sstart($9) ; Get value of array[i]
bne $8, $21, Exit ; check if it is equal to k
add $19, $19, #1 ;i
j Loop ; back into the loop

12 Exit

Also included in the architecture

e Program counter
- contains the address of
the next instruction

e The machine cycle

Q.
53 ko)
pS) 0,
& 0,
<« «©
Machine
Cycle

EXECUTE

13

Back to the Chip Architecture

14

Pipelining (using DLX assembly)
. |

e Blocks of code are typically large
- One cannot execute each instruction, one at a time
- Therefore, execute them together?
- Pipeline them

LOOP:LW RS, O(R2)
ADD RI10,R6, R8
ADDI R2, RI10,#4
SW RI0,0(R2)
ADDI R3, R3, #4
LW R1, 100(R3)
LW RI2, 100(R1)
BGTZ R12, LOOP

LOOP:LW RS, O(R2)
ADD RI10,R6, R8

15 ADDI R2, R10,#4

[P W7 0w T [[ex [wal T T
oo momm T T T 1 [[Flolelwlwl T 1T 1

[[00P-LW__r, 0[R2 TF | 1D [x| mem [we]

ADDI_R2, RIO. #4 sU|IF o | ex [mem] we

SW__RI0.0(R?) IE] 0 Ex [mem] we

ADDI_R3, R3, 74 IF | D | Ex [wew| we

LW__R1_100[R3) F D | ex [mewwe| |]
(W__RIZ 100R1) F] st | i [ex[wen|we]
BGTZ_Ri2, LOOP SCIIF ['st| st [D] Ex
Fall Through U st_fush]

ICO0P:Lw__r8, 0[R2 EN)

ADD _R10.R6,_R8
ADDI_R2. RI0.#4

16

Communication via controllers

e Communication between a computer and other devices is

typically handled through an intermediary device called a

controller

A controller converts messages and data back and forth for

compatibility

Each controller is assigned unique addresses
- Set of addresses assigned is called a port
Memory mapped 1/O

Direct Memory Access (DMA) s
— wonderful for performance s
von Neumann bottleneck

- CPU and controllers, both trying to access [T
17 the machine bus

Multiprocessor machines

e Pipelining can be viewed as the first step
towards supporting multiple processors
(parallel processing)

e Common pitfall: mutiple processors is
different from multiple processes

e Common design pitfall: throw lots of workers
at a task and it will get done faster

- Works with extreme delicacy in Software
Engineering
- Works better in hardware but makes design much
18 harder

Advanced concepts

N
e SISD - Single Instruction, Single Data
- typical of what we have seen so far
e MIMD — Multiple Instruction, Multiple Data
- in multiple processor machines, one processor
can store the program information, then call on
another processor to complete it
e SIMD - Single Instruction, Multiple Data

- typically VLIW machines (Very Long Instruction
Word)

19

Final thoughts and the next class...
. |

e | cannot stress this the plagiarism policy
more firmly than | already have

e Operating systems & networks
- Read Chapter 3 of the Brookshear book

20

