
1

CS1003/1004:
Intro to CS, Spring 2004

Lecture #11: Computer Architecture

Suhit Gupta
suhit@cs.columbia.edu

2

Administrivia

HW#4 due today
Janak’s office hours today
– Rob and I will be available

Reiteration of plagiarism policy
– VERY SERIOUS
– I recommend sending email to Janak

3

Computer Architecture

In this class, you are studying software
But how does this relate to the hardware in 
your machine
Two aspects
– At the “macro” level, how is the computer 

organized
– At the “micro” level, what is the architecture of 

each component



2

4

The Macro - The Computer

5

The Micro –
The Motherboard & The Processor

6

Computer Architecture in Software 
Perspective

I/O systemInstr. Set Proc.

Compiler

Operating
System

Application

Digital Design
Circuit Design

Instruction Set
Architecture

Firmware

Datapath & Control 

Layout



3

7

The CPU

CPU = Central Processing Unit
– consists of two parts

ALU – Arithmetic Logic Unit
Control Unit

The CPU contains talks to the machine 
memory (RAM) and the system cache, but it 
also has internal memory called registers

8

The CPU-Memory Relationship & 
Hierarchy

9

Chip Architecture (MIPS)



4

10

Instruction Set

So how does software run on a machine
The CPU only understand machine instructions and computes 
1’s and 0’s

– Therefore, something has to convert it to machine language –
enter “compiler”

The compiler converts high level code into machine code (this is why 
you have machine specific compilers)

– RISC – Reduced Instruction Set Computer
machines are efficient and fast
limited
code density is awful
examples: MIPS, DLX, (ARM/Thumb)

– CISC – Complex Instruction Set Computer
complex and slower (to some extent)
code density is excellent
examples: Intel, PowerPC, (ARM/Thumb)

11

Machine Language

Machine language – series of instructions 
that have been converted from some higher 
level language
– it is something that the processor understands.

machine instruction

Machine instruction consists of opcode
(operation code) and a number of operand 
fields

opcode Rs Rd Rt extra bits

12

Machine Language example

In C/Java, a simple piece of code to search for k in an array 
would look like

while (array[i] == k)
i++;

In MIPS assembly language, it would look like
Loop: mult $9, $19, $10 ; Initialize i

lw $8, Sstart($9) ; Get value of array[i]
bne $8, $21, Exit ; check if it is equal to k
add $19, $19, #1 ; i++
j Loop ; back into the loop

Exit:



5

13

Also included in the architecture

Program counter
– contains the address of 

the next instruction

The machine cycle

Machine
Cycle

FETCH

DECODE

EXECUTE

14

Back to the Chip Architecture

15

Pipelining (using DLX assembly)

Blocks of code are typically large
– One cannot execute each instruction, one at a time
– Therefore, execute them together?
– Pipeline them

LOOP: LW       R8,   0(R2)
ADD     R10, R6,   R8
ADDI    R2,   R10, #4
SW       R10, 0(R2)
ADDI    R3,   R3,   #4
LW       R1,   100(R3)
LW       R12, 100(R1)
BGTZ   R12, LOOP

LOOP: LW       R8,   0(R2)
ADD     R10, R6,   R8
ADDI    R2,   R10, #4



6

16

LOOP: LW       R8,   0(R2) IF ID EX MEM WB          
            ADD     R10, R6,   R8      IF ID EX MEM WB     

 

LOOP: LW       R8,   0(R2) IF ID EX MEM WB          
            ADD     R10, R6,   R8  IF st ID EX MEM WB        
            ADDI    R2,   R10, #4   st IF ID EX MEM WB       
            SW       R10, 0(R2)     IF ID EX MEM WB      
            ADDI    R3,   R3,   #4      IF ID EX MEM WB     
            LW        R1,  100(R3)         IF ID EX MEM WB    
            LW        R12, 100(R1)        IF st ID EX MEM WB  
            BGTZ    R12, LOOP         st IF st st ID EX 
      Fall Through           st st flush  
LOOP: LW       R8,   0(R2)            st IF ID 
            ADD     R10, R6,   R8              IF 
            ADDI    R2,   R10, #4               

 

17

Communication via controllers

Communication between a computer and other devices is 
typically handled through an intermediary device called a 
controller
A controller converts messages and data back and forth for 
compatibility
Each controller is assigned unique addresses

– Set of addresses assigned is called a port
Memory mapped I/O
Direct Memory Access (DMA)

– wonderful for performance
von Neumann bottleneck

– CPU and controllers, both trying to access
the machine bus

18

Multiprocessor machines

Pipelining can be viewed as the first step 
towards supporting multiple processors 
(parallel processing)
Common pitfall: mutiple processors is 
different from multiple processes
Common design pitfall: throw lots of workers 
at a task and it will get done faster
– Works with extreme delicacy in Software 

Engineering
– Works better in hardware but makes design much 

harder



7

19

Advanced concepts

SISD – Single Instruction, Single Data
– typical of what we have seen so far

MIMD – Multiple Instruction, Multiple Data
– in multiple processor machines, one processor 

can store the program information, then call on 
another processor to complete it

SIMD – Single Instruction, Multiple Data
– typically VLIW machines (Very Long Instruction 

Word)

20

Final thoughts and the next class…

I cannot stress this the plagiarism policy 
more firmly than I already have

Operating systems & networks
– Read Chapter 3 of the Brookshear book


