

Administrivia

- HW#4 due today
- Janak's office hours today
 - Rob and I will be available
- Reiteration of plagiarism policy
 - VERY SERIOUS

2

3

- I recommend sending email to Janak

Computer Architecture

- In this class, you are studying software
- But how does this relate to the hardware in your machine
- Two aspects
 - At the "macro" level, how is the computer organized
 - At the "micro" level, what is the architecture of each component

The CPU

- CPU = Central Processing Unit
 consists of two parts
 • ALU Arithmetic Logic Unit
 - Control Unit
- The CPU contains talks to the machine memory (RAM) and the system cache, but it also has internal memory called registers

7

R1 R1 3

LOOP: LW R8, 0(F	2)	IF ID	EX MEM	WB										
ALD KTO, HE	нв				P 1	D EX	MEM	MR						
LOOP: LW R8, 0(R2)	IF	ID E	K MEM	WB										
ADD R10, R6, R8		IF s	t ID	EX	MEM	WB								
ADDI R2, R10, #4		S	t IF	ID	EX	MEM	WB							
SW R10, 0(R2)		_		IF	ID	EX	MEM	WB						
ADDI R3, R3, #4					IF	ID	EX	MEM	WB					
LW R1, 100(R3)		_				IF	ID	EX	MEM	WB				
LW R12, 100(R1)							IF	st	ID	EX	MEM	WB		
BGTZ R12, LOOP		_	_					st	IF	st	st	ID	EX	
Fail Through		_	_							SL	st	nusn	- 10	
LOOP: LW R8, 0(R2)		_	_	_						_	SI	₽.	ID IC	
ADD RTU, RD, RD		_	-								-	-	ır	
ADD1 R2, R10,#4	1 1	_		I	L		I	L	L	-				
16														

Advanced concepts

- SISD Single Instruction, Single Data - typical of what we have seen so far
- MIMD Multiple Instruction, Multiple Data – in multiple processor machines, one processor can store the program information, then call on another processor to complete it
- another processor to complete it • SIMD – Single Instruction, Multiple Data
 - typically VLIW machines (Very Long Instruction Word)

19

Final thoughts and the next class...

- I cannot stress this the plagiarism policy more firmly than I already have
- Operating systems & networks - Read Chapter 3 of the Brookshear book