CS1003/1004:
Intro to CS, Spring 2004

Lecture #10: Data structures 11

Janak J Parekh
janak@cs.columbia.edu

Administrivia
m HW#4 due next Tuesday

m I'll be in Seattle next week; Suhit will lecture in
place of me
m He’s eminently qualified for the next topic

m | point on midterm problem 3...

Custom data types

m Wouldn’t it be nice for HW#3 to have a single “entity”
to refer to bank account, so we can have an array of
banfk accounts instead of two separate arrays?

m We can declare such a structure (C) or object (Java)

m We'll set it up so that it contains a String and a double
m We then access components of that “bank account”

® You should be learning language-specific skills for this

now




How complicated?

m Data structures & types can be almost as complicated
as you want
® You can nest complex data structures

m For example, a bank account can contain an array of
dependents

® You can have an array of bank accounts in a Branch
® You can have an array of Branches in a BankInstitution
m And so on...
m How can we organize all this stuff!?
m Take CS3134, and you'll learn all the details. Here’s a few.

® You won’t have to worry about the implementation details —
we’re focusing only on the basic concepts

“List” data abstraction

m The most common way to organize things is in a
list
m An array is one type of a list —it’s static sizewise;
“contiguous list”
m What are basic conceptual operations on a list?
= How do these conceptual operations work with
an array?

m Can we organize lists in any different fashion?

Linked List

m Idea: instead of allocating oze block of memory
and dividing it into individual cells, create lots of
individual scattered cells and connect them
together in one long chain

m Advantages:

m Infinite-length — just allocate another block
m Easy to insert or remove an element in the middle
m Disadvantages:

m Lots of memory management




Stacks and Queues

m Variation on lists to support specific problems

m Stacks follow a ILIFO policy (last-in, first-out)
m “Push” and “pop” operations

= Queues follow a FIFO policy (first-in, first-out)
m Enqueue, dequeue

m Both have numerous applications in computing
m Stacks used to keep track of procedure calls

m Queues used for print queues

Trees

m Instead of just a linear data structure, why can’t we have
something more flexible?

m Trees are called such because they have nodes that are
arranged into a hierarchy with a roo#, leaves, and children

m Most popular kind of tree is a binary tree, where every
node has two children

m Binary search trees provide faster ways to search of
information: O(log n) for insert, remove, search

Yes, this is a whirlwind tour

m Data Structures, W3134, covers all of these in
much greater detail, including implementation

m Just make sure you understand the concepts and
the basic algorithms involved with them

m Brookshear has a decent discussion of these




Next time

m Suhit will teach you guys the basics of a
computer (i.e., computer architecture)




