CS1003/1004:
Intro to CS, Spring 2004

Lecture #9: Midterm review, data structures

Janak J Parekh
janak@cs.columbia.edu

Administrivia
m HW#3 due now
= HW#4 out today
m Less programming, more written

m Some programming based on HW#3; I'll release
solutions you can work off of if you want

m Midterms returned now

Midterm statistics

CS1003 CS1004
Count 26 46
Mean 38.15 37.43
StDev 8.44 8.61
High 49 50
Low 23

17

How I grade?

m Grades added up at end of semester and then
“scaled” appropriately

m Median grade in the class is bordetline B/B+
m Remember, class participation helps
m Marked improvement also helps

m Come talk to me if you have any questions

Midterm answers

m Part 1

m CS1003: F, T,F, T, F

m CS1004: F,F, T, T, F

m | allowed partial credit, though
m Part 2, Q1

m Algorithm finds 7gp swe numbers

m Removing italics => val2 no longer is the second-
highest number

m O(n) algorithm

Midterm answers cont’d.

m Part 2, Q2
m 46 and 23
m Dropping the last bit does integer division by two
m Part 2, Q3 — runs 9 times (i=1 through i=9)
int i = 1;
while(i < 10) {
System.out.println(i); or printf(“sd\n”, i);
it++;

}

Midterm answers cont’d.

m Part 3: Note that prime #s start at 2!
int nextPrime = 2, numPrimes = 0;
while(numPrimes < n) {

if(isPrime(nextPrime)) {
print(nextPrime);
numPrimes++;

}

nextPrime++;

}

Why HW#3?

m | know it was a large programming assignment,
but it was a necessary one

m In essence, summarized the “first half” of the
semester

® You need these skills under your belt for the rest
of the semester

m If you didn’t quite finish, take a look at
solutions, come to office hours, etc. and wake
sure you understand

Bubble sort, reviewed

for(i=alength - 1; i > 0; i--) {
for(j =0; j < 1i; j++) {
if(aljl > alj+11) {
int temp = aljl;
aljl = a[j+1];
a[j+1] = temp;
}
}
}

m Why is this O(n??

Insertion sort

m Similar to bubble sort; s/ghtly more efficient

m Principle: consider the left side the “sorted”
side, and the right side the “unsorted” side

m Successively insert the “next unsorted” element
into position into the “sorted” side

m Applets demoing this and Bubble sort:
http://home.janak.net/cs3134/lafore-
applets/Chap03/

® You can use either sort...

Data structures

m We’ve been referring to this informally, but now
let’s be precise

m A computer’s memory is a large open space, and
we can organize information in it

w A data structure is an organized entity in this
memory space

m The most primitive data structures: primitive types

Primitive types

m int, char, double, etc.

m Occupy a well-known amount of memory

m For 32-bit machines, an char takes 7 by, an int takes 4 byzes, a
double takes 8 bytes
m Not ahways the case, but enough for this class
m The variable refers to that block of memory in its
entirety

m Can’t typically store decimal places inside an int; “won’t fit

m But what if we want something more complicated?

Arrays

m I’ve arbitrarily defined these as a block of
memory divided into cells

m To be more precise, an array is a static structure
in memory
m Memory is organized “contiguously” when you
define an array
m 10 integers => 10 * 4 => 40 bytes on a 32-bit machine
m The variable referring to the array actually just points
to the beginning of the appropriate memory location

Arrays (2)

m The programming language then does some
math when you use [] to access an index in that
array...

m An array of integers, length 10 is at memory location
“4000”.

m How many bytes is this array in total?
m What's the position of the 5% integer?

m Rationale for 0-based makes a little more sense

More generally...

m For primitive datatypes (int, char, etc.), the variable
refers to that entity i its entirety

m But whenever we work with a more complex data
structure than just a primitive datatype, our variable will
“point” to the beginning of the structure

m Known as a pointer (C) ot a reference (Java)

m The programming language then decides what part of

the memory starting at the variable you’re working with

Strings

m Strings are an interesting case

m In C, Strings are just arrays, and we treat them as
blocks of memory of predefined size

m In Java, Strings are dynamic, and can vary in

length
m We'll get into more technical details later
m Here’s why doing == with Strings doesn’t work,
though...

Custom data types

m Wouldn’t it be nice for HW#3 to have a single “entity”
to refer to bank account, so we can have an array of
bank accounts instead of two separate arrays?

m We can declare such a structure (C) ot object (Java)

m We'll set it up so that it contains a String and a double
m We then access components of that “bank account”

m This week’s lab will start with the basics on how to do

exactly this

How complicated?

m Data structures & types can be almost as complicated
as you want
® You can nest complex data structures

m For example, a bank account can contain an array of
dependents

® You can have an array of bank accounts in a Branch
® You can have an array of Branches in a BankInstitution
m And so on...
m How can we organize all this stuffl?
m Take CS3134, and you'll learn all the details. Here’s a few.

“List” data abstraction

m The most common way to organize things is in a
list
m An array is one type of a list — it’s static sizewise;
“contiguous list”

m What are basic conceptual operations on a list?

m Can we organize lists in any different fashion?

Next time

m Continue discussion on data structutres

