CS1003/1004:
 Intro to CS, Spring 2004

Lecture \#8: Algorithms IV
Janak J Parekh
janak@cs.columbia.edu

Administrivia

\qquad

- HW\#2 due now
- Won't be returned before midterm, so I'll release solutions
- HW\#3 out
- All programming
- I'm teaching C lab this week
- Midterm next Tuesday \qquad
- Topics list posted
- Extra review session?
\qquad
\qquad
\qquad
\qquad
\qquad

Agenda

- One more recursive example \qquad
- Talk about one more class of algorithms: sorting
- Spend some more time on big-Oh notation
- Midterm review
- More midterm review in labs...

Recursion, redux

- Idea: instead of using explicit loops, cast \qquad problem in terms of itself
- Base case(s) and recursive case
- How can we compute n! recursively?
- I won't make you design a recursion on the exam, but you should be able to recognize one \qquad
\qquad
\qquad

Sorting

\qquad

- Common problem: given data, sort it in some \qquad fashion
- Most common-type is comparison-based sort
\qquad
- Can you come up with way to sort information?
- Many different kinds; we'll look at two today
- Bubble sort \qquad
- Insertion sort
- Let's make this interesting...

Big-Oh notation, redux

\qquad

Basic intuition: \qquad

- Find the number of steps in terms of n or other variables \qquad
- Drop any constants or additive lower-order terms
- Put a O() around the result \qquad
- Common: $\mathrm{O}(1), \mathrm{O}(\log \mathrm{N}), \mathrm{O}(\mathrm{N}), \mathrm{O}\left(\mathrm{N}^{2}\right), \mathrm{O}\left(2^{\mathrm{N}}\right)$
- What's the complexity of the algorithms we just talked about?
\qquad
\qquad
\qquad

Next time
- Midterm
- Then break! ©
- Then HW3 is due... : ©

