CS$1003/1004:
Intro to CS, Spring 2004
Lecture #7: Algorithms IIT

Janak J Parekh
janak@cs.columbia.edu

Administrivia
m HW#2 due this week
m I’ll cover running times today
m HW#1 being returned between last week and
this week
m We'll coordinate returns better in the future
m Midterm in two weeks
m Format of the midterm
m I’ll post a list of topics next week

m Extra review session?

Agenda

m Finish algorithms discussion (for now)

Here’s another way to look at
repetition
m fib(n) = fib(n-1) + fib(n-2), right?
m We can actually encode that in a computer

m Recursion: Define a solution in terms of a smaller
version of itself

m Must have szopping (base) case(s)
m What’s the base case for the above recursion?

m How about doing x"y using recursion?

Other recursive examples

m Power (x"y)
m Binary search
m Palindrome checking

m Most iterative structures can be done recursively,
and vice-versa

Algorithm efficiency

m Often, there’s multiple ways to implement an
algorithm

m How to characterize if one’s better or not?

m Two primary considerations:
m How fast does an algorithm run?
m How much memory does an algorithm take?

m Let’s focus on the first one for now

Our multiple Fibonacci algorithms

m Do they run at the same speed?
m Let’s try fib(10)... then 20... then 40
m Hmm, why do they differ?

m And can we classify this difference

How fast does an algorithm run?

m Let’s first think of it in the context of s#gps

m How long might a linear search take through a list of N
clements?

m Canonical way to characterize this is to use “big-Oh”
notation
m Key insight: we’re interested in orders of magnitude, not
constants
m Strangely, book uses big-Theta notation, which is less used
except when doing more formalized analysis

Big-Oh notation

m Basic intuition:
m [ind the number of steps in terms of # or other
variables
m Drop any constants or additive lower-order terms
m Put a O() around the result
m Let’s look at the previous algorithms we
discussed today and see what their big-Oh
complexity is. ..

Other algorithms?

1. An algorithm to compute n! — recursively
2. Sort the contents of an array
m I don’tlike insertion sort — let’s do bubble sort

m We'll continue to do more “interesting”
algorithms as the semester proceeds

Next time

m Continue algorithms

