
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Administrivia

\qquad

- HW\#2 due this week
- I'll cover running times today
- HW\#1 being returned between last week and \qquad this week
- We'll coordinate returns better in the future \qquad
- Midterm in two weeks
- Format of the midterm \qquad
- I'll post a list of topics next week
- Extra review session? \qquad
\qquad

Agenda

- Finish algorithms discussion (for now) \qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Here's another way to look at repetition

- $\mathrm{fib}(\mathrm{n})=\mathrm{fib}(\mathrm{n}-1)+\mathrm{fib}(\mathrm{n}-2)$, right? \qquad
- We can actually encode that in a computer
- Recursion: Define a solution in terms of a smaller version of itself
- Must have stopping (base) case(s)
- What's the base case for the above recursion?
- How about doing $x^{\wedge} y$ using recursion?

Other recursive examples

\qquad

- Power ($\mathrm{x}^{\wedge} \mathrm{y}$)
- Binary search
- Palindrome checking
- Most iterative structures can be done recursively, \qquad and vice-versa

Algorithm efficiency

- Often, there's multiple ways to implement an \qquad algorithm
- How to characterize if one's better or not? \qquad
- Two primary considerations: \qquad
- How fast does an algorithm run?
- How much memory does an algorithm take? \qquad
- Let's focus on the first one for now

Our multiple Fibonacci algorithms

- Do they run at the same speed?
- Let's try fib(10) \ldots then $20 \ldots$ then 40
- Hmm, why do they differ?
- And can we classify this difference
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

How fast does an algorithm run?

\qquad

- Let's first think of it in the context of steps \qquad
- How long might a linear search take through a list of N elements? \qquad
- Canonical way to characterize this is to use "big-Oh" notation
- Key insight: we're interested in orders of magnitude, not constants
- Strangely, book uses big-Theta notation, which is less used except when doing more formalized analysis

Big-Oh notation

- Basic intuition: \qquad
- Find the number of steps in terms of n or other variables \qquad
- Drop any constants or additive lower-order terms
- Put a O() around the result \qquad
- Let's look at the previous algorithms we discussed today and see what their big-Oh complexity is...
\qquad
\qquad
\qquad

Other algorithms?

1. An algorithm to compute $\mathrm{n}!-$ recursively
2. Sort the contents of an array

- I don't like insertion sort - let's do bubble sort
- We'll continue to do more "interesting" algorithms as the semester proceeds

Next time

