CS1003/1004:
Intro to CS, Spring 2004

Lecture #6: Algorithms II

Janak J Parekh
janak@cs.columbia.edu

Administrivia
m HW#2 is out
m You really should start earlier for this one. ..
m HW#1 being graded

m Most people seemed to do well on the programs

m [f you couldn’t do the HW#1 programming, come
see me and let’s straighten it out — future
homeworks will only be harder

m Questions? Feedback?
m Yet another ACM UNIX session this
Wednesday (more advanced stuff), 7:30, 252 ET

Agenda

m Sidebar: good homework practices

m Continue algorithms discussion




Homework notes

m As I suggest, make sure you know what you want to do
first, conceptually, before programming it
m How to debug your code?
m TFirst - recognize if your error is syntax or semantics
m Learn how to understand the compilet’s error messages

m Try going through the code by hand and make sure it makes
sense

m Put debugging statements in your code

m If you are truly stuck, go to a TA’s office houts or email them
a detailed bugreport

m Don’t send code!

Homework notes (II)

m Commenting your code
m ] didn’t require it for HW#1, but I want you to start
for HW#2
m /* ... */and // conventions
m What to comment?

m Put your name and a brief description at the top of your
source file

m Put a comment before things that are non-obvious
m Put a comment before non-obvious functions
m Wherever else you feel appropriate

m Look at my examples...

Review of last class

m Strategies with coming up with algorithms. ..

m “Get foot in the door™: try to get an intuitive grasp
on the problem first, conceptually

m Stepwise refinement: take the big picture and break
into smaller pieces

m Determine if there are any iterative structures to be
implemented

m Keep boundary conditions in mind!




Iterative structures, cont’d.

m T'wo more types of loop constructs

m for: useful for situations where we’re doing a
loop N times
m for(i=0;i < 10;i++) { ... } runs exactly 10 times
m Three parts: initialize, condition, increment
mfor(;i<10;) { ... } == while(i < 10) { ... }
m Java: can put declaration inside for loop, e.g.,

for(inti=0;1 < 10;i++) { ... }

Iterative structures, cont’d.

m do-while: almost the same as while, but it does
one run first
mdo { ... } while (0>1); will run how many times?
m Less used
m Another paradigm: use the break keyword
m Will break out of loop, sometimes useful if you find
you don’t need to run through every step
m while(true) { ... break; ... } is sometimes used — not
usually good form

Let’s revisit our examples

1. Print out the first » numbers, and keep a
running total... using a for loop

2. Print out the first #» Fibonacci numbers

3. Write a function that calculates x”y (i.e., raise x
to the y power)

4. Reverse a list (array) of numbers




Here’s another way to look at
repetition
m fib(n) = fib(n-1) + fib(n-2), right?
m We can actually encode that in a computer

m Recursion: Define a solution in terms of a smaller
version of itself

m Must have szopping (base) case(s)
m What’s the base case for the above recursion?

m How about doing x"y using recursion?

Another recursive example

m Binary search: works for a sorted list of
information
m Basic idea: pick the middle element
m If that’s what we’re looking for, done
m Ifit’s larger, recursively search the “top half”
m Otherwise, recursively search the “bottom half”

m If we’re stuck with an empty list, we failed

HW#2

m Asks you to check a palindrome

m I’m not going to do the homework for you, but
let’s think, conceptually, what needs to be
done...




Next time

m Finish up intro to algorithms




