
1

CS1003/1004:CS1003/1004:
Intro to CS, Spring 2004Intro to CS, Spring 2004

Lecture #6: Algorithms IILecture #6: Algorithms II

Janak J ParekhJanak J Parekh
janak@cs.columbia.edujanak@cs.columbia.edu

AdministriviaAdministrivia
HW#2 is outHW#2 is out

You You really really should start earlier for this one…should start earlier for this one…

HW#1 being gradedHW#1 being graded
Most people seemed to do well on the programsMost people seemed to do well on the programs
If you couldn’t do the HW#1 programming, come If you couldn’t do the HW#1 programming, come
see me and let’s straighten it out see me and let’s straighten it out –– future future
homeworkshomeworks will only be harderwill only be harder
Questions? Feedback?Questions? Feedback?

Yet another ACM UNIX session this Yet another ACM UNIX session this
Wednesday (more advanced stuff), 7:30, 252 ETWednesday (more advanced stuff), 7:30, 252 ET

AgendaAgenda

Sidebar: good homework practicesSidebar: good homework practices
Continue algorithms discussionContinue algorithms discussion

2

Homework notesHomework notes

As I suggest, make sure you know what you want to do As I suggest, make sure you know what you want to do
first, first, conceptuallyconceptually, before programming it, before programming it
How to debug your code?How to debug your code?

First First -- recognize if your error is syntax or semanticsrecognize if your error is syntax or semantics
Learn how to understand the compiler’s error messagesLearn how to understand the compiler’s error messages
Try going through the code by hand and make sure it makes Try going through the code by hand and make sure it makes
sensesense
Put Put debugging statementsdebugging statements in your codein your code
If you are truly stuck, go to a TA’s office hours or email them If you are truly stuck, go to a TA’s office hours or email them
a a detaileddetailed bugreportbugreport
Don’t send code!Don’t send code!

Homework notes (II)Homework notes (II)

Commenting your codeCommenting your code
I didn’t require it for HW#1, but I want you to start I didn’t require it for HW#1, but I want you to start
for HW#2for HW#2
/* … */ and // conventions/* … */ and // conventions
What to comment?What to comment?

Put your name and a brief description at the top of your Put your name and a brief description at the top of your
source filesource file
Put a comment before things that are nonPut a comment before things that are non--obviousobvious
Put a comment before nonPut a comment before non--obvious functionsobvious functions
Wherever else you feel appropriateWherever else you feel appropriate

Look at my examples…Look at my examples…

Review of last classReview of last class

Strategies with coming up with algorithms…Strategies with coming up with algorithms…
“Get foot in the door”: try to get an intuitive grasp “Get foot in the door”: try to get an intuitive grasp
on the problem first, conceptuallyon the problem first, conceptually
Stepwise refinement: take the big picture and break Stepwise refinement: take the big picture and break
into smaller piecesinto smaller pieces
Determine if there are any iterative structures to be Determine if there are any iterative structures to be
implementedimplemented
Keep boundary conditions in mind!Keep boundary conditions in mind!

3

Iterative structures, cont’d.Iterative structures, cont’d.

Two more types of loop constructsTwo more types of loop constructs
for: useful for situations where we’re doing a for: useful for situations where we’re doing a
loop N timesloop N times

for(ifor(i=0; i < 10; i++) { … } runs exactly 10 times=0; i < 10; i++) { … } runs exactly 10 times
Three parts: initialize, condition, incrementThree parts: initialize, condition, increment
for(; i < 10;) { … } == for(; i < 10;) { … } == while(iwhile(i < 10) { … }< 10) { … }
Java: can put declaration inside for loop, e.g.,Java: can put declaration inside for loop, e.g.,
for(intfor(int i=0; i < 10; i++) { … }i=0; i < 10; i++) { … }

Iterative structures, cont’d.Iterative structures, cont’d.

dodo--while: almost the same as while, but it does while: almost the same as while, but it does
one run one run firstfirst

do { … } while (0>1); will run how many times?do { … } while (0>1); will run how many times?
Less usedLess used

Another paradigm: use the Another paradigm: use the breakbreak keywordkeyword
Will break out of loop, sometimes useful if you find Will break out of loop, sometimes useful if you find
you don’t need to run through every stepyou don’t need to run through every step
while(truewhile(true) { … break; … } is sometimes used) { … break; … } is sometimes used –– not not
usually good formusually good form

Let’s revisit our examplesLet’s revisit our examples

1.1. Print out the first Print out the first nn numbers, and keep a numbers, and keep a
running total… running total… using a for loopusing a for loop

2.2. Print out the first Print out the first nn Fibonacci numbersFibonacci numbers
3.3. Write a function that calculates Write a function that calculates x^yx^y (i.e., raise x (i.e., raise x

to the y power)to the y power)
4.4. Reverse a list (array) of numbersReverse a list (array) of numbers

4

Here’s another way to look at Here’s another way to look at
repetitionrepetition

fib(nfib(n) = fib(n) = fib(n--1) + fib(n1) + fib(n--2), right?2), right?
We can actually encode that in a computerWe can actually encode that in a computer

Recursion:Recursion: Define a solution in terms of a smaller Define a solution in terms of a smaller
version of itselfversion of itself
Must have Must have stoppingstopping (base) (base) case(scase(s))
What’s the base case for the above recursion?What’s the base case for the above recursion?

How about doing How about doing x^yx^y using recursion?using recursion?

Another recursive exampleAnother recursive example

Binary search: works for a sorted list of Binary search: works for a sorted list of
informationinformation
Basic idea: pick the middle elementBasic idea: pick the middle element

If that’s what we’re looking for, doneIf that’s what we’re looking for, done
If it’s larger, recursively search the “top half”If it’s larger, recursively search the “top half”
Otherwise, recursively search the “bottom half”Otherwise, recursively search the “bottom half”
If we’re stuck with an empty list, we failedIf we’re stuck with an empty list, we failed

HW#2HW#2

Asks you to check a Asks you to check a palindromepalindrome
I’m not going to do the homework for you, but I’m not going to do the homework for you, but
let’s think, conceptually, what needs to be let’s think, conceptually, what needs to be
done…done…

5

Next timeNext time

Finish up intro to algorithmsFinish up intro to algorithms

