CS1003/1004:
Intro to CS, Spring 2004

Lecture #5: Data storage, algorithms

Janak J Parekh
janak@cs.columbia.edu

Administrivia

m HW#1 is due Thursday
m HW#2 will come out at about the same time
m TA office hour changes

m Check the website and webboard on a weekly basis
m Another UNIX tutorial session via the ACM

= Not hands-on; more of a lecture style

m Wednesday 7:30pm, 252 ET
m Is the board readable?

Agenda

m Finish up data representation

m ’'m going to skip flip-flops and two’s complement
until later in the semester, when it fits better

m Start algorithms discussion




Why do you care about bits?

m These are the basic building-blocks of a

computer

It turns out you can build everything up from
those four primitive operations!

Bit and logic constructs pervade throughout a
programming language as well

m Logic constructs are fundamental to programming

Some bits-and-bytes trivia

8 bits typically == 1 byte
Blocks of memory done in powers of 2
210 bytes == 1024 bytes == 1 kilobyte
220 bytes == 1,048,576 bytes == 1 megabyte
230 bytes == 1 gigabyte
Confusion with metric terms
Several different kinds of memory
m RAM — Random Access Memory — very fast

m Hard disks, CDs, tapes — mass storage systems — generally
slower

Algorithm basics

m An algorithm is “an ordered set of

unambiguous, executable steps”.

m Ordered — does not imply “followed in order”

m Executable — each step must be doable

m Unambiguous — during execution, information in the
state of the process must be sufficient to determine,
uniquely and completely, the actions required by
each step

m Implies that the algorithm zerminates with a result

m The “halting problem”




Why do we care?

m Applies to real-wotld circumstances as well

m Every activity of the human mind actually the result of an
algorithm execution?

m Difference: we understand the real-wotld context

m Once we understand the digital context, programming
ultimately becomes easy

m Challenge: representing an algorithm
m English is lousy for this

m A major challenge in software design

So how do we represent algorithms?

m Several key building blocks
m Primitives (+, -, etc.)
m Insufficient by itself for “higher-level” code — too
repetitious, much like assembly
m Higher-order language constructs
u _Assignment (a = b + 5)
u Conditionals (if (a > 10)...)
m [oops (while (a < 20)...)
u Procedures (c = random())

What’s psuedocode?

m A way of approximating the syntax of real code
without getting lost in the syntactic details

m In essence, a cross between English and code

m Useful when trying to design an algorithm on
paper

m In this class, I'll generally avoid psuedocode
except when necessary

m You’re welcome to use the book’s model or my
model




Procedures?

m [’ve dealt with this implicitly, but let’s be more
formal
m How does printf(...) or System.out.println(...)
work?
m Someone else has written the code to handle printing

m These procedures may take parameters and may return a
result

m Note — many parameters, single result!

w Called functions in C, methods in Java

Why procedures?

m Code reuse

m If we design a mathematical operation, we don’t
want to have to write it out repeatedly

m Code organization

m Lets us “segment” the code to make it more readable
and manageable

m Enables abstraction

m Worry about the details of a particular task in its
own procedure, not elsewhere

Declaring a procedure in C or Java

m Basic concept: just name one

m Three parts: procedure name, return value’s
datatype, and argument list

m Argument list is a pair of datatype and variable name
m Why no name for the return value?

m Let’s write a very simple example: finding the
average of two numbers




Organizing code

m What does our main() function do, then?

m For any non-trivial program, generally main() is used to
set up and control the program, and then all the
handling is done in subsidiary functions

m In C, order of functions may matter
m In Java, constructors are also used for setup purposes
m This way, we avoid a 5,000-line main()

m [earning optimal organizing takes time and experience

How do we come up with
algorithms?

m An imprecise science at best: problem-solving
m Understand the problem

m Get an idea of how/which algorithm might solve the
problem

m Formulate the algorithm and represent as a program

m Evaluate the program for accuracy and potential to

solve other problems

m This is not much help, is it?

“Get a foot in the doot”

m Tty doing the first (few) step(s) by hand
m Look at what you had to do to accomplish it
m See if you can reapply this to continue solving the
problem
m Reapply another solution
m Stepwise refinement
m ook at the problem from a very high level

m Break it down repeatedly into smaller pieces, until
we get a set of algorithmic steps




Iterative structures

m Very often, we need to repeat steps in order to
solve a problem

= A number of basic methodologies that do
precisely this
m Sequential search algorithm
m Loop-based control
m Sorting

m Warning: need to keep track of boundary conditions

Let’s try some simple examples

1. Print out the first » numbers, and keep a
running total

2. Print out the first #» Fibonacci numbers

3. Write a function that calculates x"y (i.e., raise x
to the y power)

4. Reverse a list (array) of numbers

Next time

m Look at another approach to algorithm
problem-solving

m Discuss how to compare algorithms and their
efficiency




