
1

CS1003/1004:CS1003/1004:
Intro to CS, Spring 2004Intro to CS, Spring 2004

Lecture #5: Data storage, algorithmsLecture #5: Data storage, algorithms

Janak J ParekhJanak J Parekh
janak@cs.columbia.edujanak@cs.columbia.edu

AdministriviaAdministrivia
HW#1 is due ThursdayHW#1 is due Thursday
HW#2 will come out at about the same timeHW#2 will come out at about the same time
TA office hour changesTA office hour changes

Check the website and Check the website and webboardwebboard on a weekly basison a weekly basis

Another UNIX tutorial session via the ACMAnother UNIX tutorial session via the ACM
Not handsNot hands--on; more of a lecture styleon; more of a lecture style
Wednesday 7:30pm, 252 ETWednesday 7:30pm, 252 ET

Is the board readable?Is the board readable?

AgendaAgenda

Finish up data representationFinish up data representation
I’m going to skip flipI’m going to skip flip--flops and two’s complement flops and two’s complement 
until later in the semester, when it fits betteruntil later in the semester, when it fits better

Start algorithms discussionStart algorithms discussion



2

Why do you care about bits?Why do you care about bits?

These are the basic buildingThese are the basic building--blocks of a blocks of a 
computercomputer
It turns out you can build It turns out you can build everythingeverything up from up from 
those four primitive operations!those four primitive operations!
Bit and logic constructs pervade throughout a Bit and logic constructs pervade throughout a 
programming language as wellprogramming language as well

Logic constructs are fundamental to programmingLogic constructs are fundamental to programming

Some bitsSome bits--andand--bytes triviabytes trivia

8 bits typically == 1 byte8 bits typically == 1 byte
Blocks of memory done in powers of 2Blocks of memory done in powers of 2
221010 bytes == 1024 bytes == 1 kilobytebytes == 1024 bytes == 1 kilobyte
222020 bytes == 1,048,576 bytes == 1 megabytebytes == 1,048,576 bytes == 1 megabyte
223030 bytes == 1 gigabytebytes == 1 gigabyte
Confusion with metric termsConfusion with metric terms
Several different kinds of memorySeveral different kinds of memory

RAM RAM –– Random Access Memory Random Access Memory –– very fastvery fast
Hard disks, CDs, tapes Hard disks, CDs, tapes –– mass storage systems mass storage systems –– generally generally 
slowerslower

Algorithm basicsAlgorithm basics

An algorithm is “an ordered set of An algorithm is “an ordered set of 
unambiguous, executable steps”.unambiguous, executable steps”.

Ordered Ordered –– does not imply “followed in order”does not imply “followed in order”
Executable Executable –– each step must be doableeach step must be doable
Unambiguous Unambiguous –– during execution, information in the during execution, information in the 
state of the process must be sufficient to determine, state of the process must be sufficient to determine, 
uniquely and completely, the actions required by uniquely and completely, the actions required by 
each stepeach step
Implies that the algorithm Implies that the algorithm terminatesterminates with a resultwith a result

The “halting problem”The “halting problem”



3

Why do we care?Why do we care?

Applies to realApplies to real--world circumstances as wellworld circumstances as well
Every activity of the human mind actually the result of an Every activity of the human mind actually the result of an 
algorithm execution?algorithm execution?

Difference: we understand the realDifference: we understand the real--world contextworld context
Once we understand the digital context, programming Once we understand the digital context, programming 
ultimately becomes easyultimately becomes easy

Challenge: representing an algorithmChallenge: representing an algorithm
English is lousy for thisEnglish is lousy for this
A major challenge in software designA major challenge in software design

So how do we represent algorithms?So how do we represent algorithms?

Several key building blocksSeveral key building blocks
Primitives (+, Primitives (+, --, etc.), etc.)

Insufficient by itself for “higherInsufficient by itself for “higher--level” code level” code –– too too 
repetitious, much like assemblyrepetitious, much like assembly

HigherHigher--order language constructsorder language constructs
Assignment Assignment (a = b + 5)(a = b + 5)
ConditionalsConditionals (if (a > 10)…)(if (a > 10)…)
LoopsLoops (while (a < 20)…)(while (a < 20)…)
ProceduresProcedures (c = random())(c = random())

What’s What’s psuedocodepsuedocode??

A way of approximating the syntax of real code A way of approximating the syntax of real code 
without getting lost in the syntactic detailswithout getting lost in the syntactic details
In essence, a cross between English and codeIn essence, a cross between English and code
Useful when trying to design an algorithm on Useful when trying to design an algorithm on 
paperpaper
In this class, I’ll generally avoid In this class, I’ll generally avoid psuedocodepsuedocode
except when necessaryexcept when necessary
You’re welcome to use the book’s model or my You’re welcome to use the book’s model or my 
modelmodel



4

Procedures?Procedures?

I’ve dealt with this implicitly, but let’s be more I’ve dealt with this implicitly, but let’s be more 
formalformal
How does How does printfprintf(…) or (…) or System.out.printlnSystem.out.println(…) (…) 
work?work?

Someone else has written the code to handle printingSomeone else has written the code to handle printing
These These proceduresprocedures may take may take parametersparameters and may and may returnreturn a a 
resultresult
Note Note –– many parameters, single result!many parameters, single result!

Called Called functions functions in C, in C, methodsmethods in Javain Java

Why procedures?Why procedures?

Code reuseCode reuse
If we design a mathematical operation, we don’t If we design a mathematical operation, we don’t 
want to have to write it out repeatedlywant to have to write it out repeatedly

Code organizationCode organization
Lets us “segment” the code to make it more readable Lets us “segment” the code to make it more readable 
and manageableand manageable

Enables abstractionEnables abstraction
Worry about the details of a particular task in its Worry about the details of a particular task in its 
own procedure, not elsewhereown procedure, not elsewhere

Declaring a procedure in C or JavaDeclaring a procedure in C or Java

Basic concept: just name oneBasic concept: just name one
Three parts: procedure name, return value’s Three parts: procedure name, return value’s 
datatypedatatype, and argument list, and argument list
Argument list is a pair of Argument list is a pair of datatypedatatype and and variable namevariable name
Why no name for the return value?Why no name for the return value?

Let’s write a very simple example: finding the Let’s write a very simple example: finding the 
average of two numbersaverage of two numbers



5

Organizing codeOrganizing code

What does our main() function do, then?What does our main() function do, then?
For any nonFor any non--trivial program, generally main() is used to trivial program, generally main() is used to 
set up and control the program, and then all the set up and control the program, and then all the 
handling is done in subsidiary functionshandling is done in subsidiary functions

In C, order of functions may matterIn C, order of functions may matter
In Java, In Java, constructorsconstructors are also used for setup purposesare also used for setup purposes

This way, we avoid a 5,000This way, we avoid a 5,000--line main()line main()
Learning optimal organizing takes time and experienceLearning optimal organizing takes time and experience

How do we come up with How do we come up with 
algorithms?algorithms?

An imprecise science at best: problemAn imprecise science at best: problem--solvingsolving
Understand the problemUnderstand the problem
Get an idea of how/which algorithm might solve the Get an idea of how/which algorithm might solve the 
problemproblem
Formulate the algorithm and represent as a programFormulate the algorithm and represent as a program
Evaluate the program for accuracy and potential to Evaluate the program for accuracy and potential to 
solve other problemssolve other problems

This is not much help, is it?This is not much help, is it?

““Get a foot in the door”Get a foot in the door”

Try doing the first (few) Try doing the first (few) step(sstep(s) by hand) by hand
Look at what you had to do to accomplish itLook at what you had to do to accomplish it
See if you can reapply this to continue solving the See if you can reapply this to continue solving the 
problemproblem

Reapply another solutionReapply another solution
Stepwise refinementStepwise refinement

Look at the problem from a very high levelLook at the problem from a very high level
Break it down repeatedly into smaller pieces, until Break it down repeatedly into smaller pieces, until 
we get a set of algorithmic stepswe get a set of algorithmic steps



6

Iterative structuresIterative structures

Very often, we need to Very often, we need to repeatrepeat steps in order to steps in order to 
solve a problemsolve a problem
A number of basic methodologies that do A number of basic methodologies that do 
precisely thisprecisely this

Sequential search algorithmSequential search algorithm
LoopLoop--based controlbased control
SortingSorting

Warning: need to keep track of Warning: need to keep track of boundary conditionsboundary conditions

Let’s try some simple examplesLet’s try some simple examples

1.1. Print out the first Print out the first nn numbers, and keep a numbers, and keep a 
running totalrunning total

2.2. Print out the first Print out the first nn Fibonacci numbersFibonacci numbers
3.3. Write a function that calculates Write a function that calculates x^yx^y (i.e., raise x (i.e., raise x 

to the y power)to the y power)
4.4. Reverse a list (array) of numbersReverse a list (array) of numbers

Next timeNext time

Look at another approach to algorithm Look at another approach to algorithm 
problemproblem--solvingsolving
Discuss how to compare algorithms and their Discuss how to compare algorithms and their 
efficiencyefficiency


