CS1003/1004:
Intro to CS, Spring 2004

Lecture #4: Language concepts, data storage

Janak J Parekh
janak@cs.columbia.edu

Administrivia
m HW#1 is out!
m ] hope you're checking the website frequently

m Should know everything for the HW this week

m Programming is about 5 lines of code, so don’t worry too
much

m Fourth TA: Rob Tobkes

m Info on website

m We now have office hours 5 days a week
m Labs update

m How’d your first lab go?

m This week only: Suhit’s combining Thursday C labs to see what
works best

Register for the webboard, or else!
Put books on reserver

Agenda

m Finish up language intro
m Start data representation concepts

m Hopefully everything you need for the theory
part of HW#1
m If not, I'll trim the HW#1 theory a little bit

m Some overlap with labs...




Variables

m Very often, we want to store information from user as
data
m We can do so by declaring variables
m In C or Java, a declarative statement
“datatype variablename [ = value ];”, e.g.
“inti=5;”
m Conceptually similar to a mathematical variable, but we try to
be more precise and assign the variable a daza type
m We can then assign values to these variables
m From user input
m As the result of some computation
m Even random numbers

What data types?

m Lots; you'll see some of them in the labs

m Some basics. ..

m int = Integer, generally between -2 billion and positive 2
billion

m double = Floating-point (i.e., flexible number of decimal
places), roughly between -103% and 1038 (although not an
infinite number of decimals!)

m char = Character (such as ‘a’)

m Strings (i.e., words, sentences or arbitrary alphanumeric data)

are complicated ®

m We'll talk about storage shortly...

And more...

m We can even declate arrays of variables

m Since we’re not going to have 50,000 declarations at
the beginning of every piece of code

m “int j[10];” in C, “int j[] = new int[10];” in Java
m Access array by index, e.g., “j[5] = 15;”
m Note array is homogeneous, not heterogeneous
m Can get much more complicated by this, but
let’s not worry about that yet




Constants and literals

We don’t need to declare variables for everything; as we
saw, we can just /zerally put numbers in place when we

want to do things
m c.g., print the sum of 10 and 15
m We can also declare that certain variables are constants
for sanity’s sake
m “const double Pi = 3.141592654” in C
m “final double Pi = 3.141592654” in Java

Assignments

m Once we’ve declared our variables, we might want to
assign them values

mx=5

Can do this at declaration-time, too
mintx =5;
m Key concept: the above two statements are not
functionally equivalent!
m Operators commonly used in assighments
m ¥ for multiply, + for add, - for subtract...
m Operator precedence applies: use parentheses!

Comments

m As your code becomes more complex, you’ll
want to document it a little
m In C and Java, can use “/* comment */”
notation
m Can be multiple lines
m In Java, can also use “// comment” notation
m Single-line only
m Sometimes works in C too, but depends on age of
compiler




Control statements

m We generally want to adjust the behavior of our
program based on the situation
m Options in a menu: 7/ the user clicks Save, #hen save the file.
Else if the user clicks Exit, #hen Exit. And so on...
m In older programming languages, “goto” would exist
m Considered bad form nowadays, because it can lead to very
confusing code
m Instead, the jf-#hen-else construct is used
m if(something) do something
else if(something else) do something else
else do a generic thing
m Generally, control statement itself doesn’t need a
semicolon

What’s “something”?

A boolean condition
m That is, if the test clause evaluates to #ue, then the
corresponding code is executed

m Use cutly braces ({,}) to “group togethet” code to be
executed
m if(numcredits > 20) {
printf(“You’re insane!”);

}

What is a boolean value?

m In Java, there is a data type called boolean
m Can be assigned “true” or “false”
m In C, no such datatype; you can use an int to represent
it
m 0 is false, any nonzero value is true (1 is common)
m Can “create” a boolean datatype, much later in the semester
m Why 0 and 1?

m Three more slides...




What are boolean operators?

m A logic operator that takes one or two operands and
produces a boolean result
= For numbers:
m Equals: ==
m Greater than: >
m Less than: <

«—2 [73—)

m Extremely important: is not

m “=”is an assignment operator, while “==""is a boolean
test

m C programmers: you will get burned by this at least once in your life
m Java programmers: the compiler will usually warn you

Combine boolean values?

m AND: &&
m Only true if both operands are true
= OR: ||
m Only false if both operands are false
= NOT: !
m Takes single operand and reverses it
m We can draw “truth tables” for each of these

m Let’s do a few examples...

Loops

m Instead of doing something once, can we do something
many times until a boolean condition is satisfied?
® Yes, we can
m while(something is true) do something
m Will keep on running (potentially forever)
® How can we make an infinite loop (not that we’d want to)?
m How can we make our loops non-infinite?
m for statement: more complex notation for loops

m In labs...

m [teration is the fancy term for such repetition




How is this information represented
in the machine?

m Bt (binary digit): either O or 1
m Why?
m What can we do with bits?
m Combine them together into larger values

m Base 2 representation of numbers. ..
m Converting from decimal to binary: divide by 2 repeatedly
and keep the remainder
m Converting from binary to decimal: multiply the i digit
by 2! (with i starting at 0 for the ones’ digit)

Binary representation, cont’d.

m We can also represent characters (in general) as a binary
sequence
m ASCII: American Standard Code for Information
Interchange

m Originally used 7 bits to represent a single character
m Now, 8 bits used == byze in most computers today
m Google for “ASCII table”

m Finally, we can apply /ogic operators to bit values
m AND, OR, NOT, XOR are the four basics

= Why XOR?

m We've already seen the first two...

AND and OR

AND OR

Inputs :Df Qutput Inputs D Output

Inputs Qutput Inputs Output

==
Horo
= o oo
== OO
= o+ Oo
=1




NOT and XOR

XOR NOT
Inputs 'D Qutput Inputs —Do— Qutput
Inputs Qutput Inputs Qutput
[V ] 0 1] 1
01 1 1 0
10 1
1b5] 0

Logic diagrams

m Use those four building blocks to build
increasingly complex logic operators, and
ultimately devices

m Example: how would we diagram a AND b
AND ¢?

Next time

m Finish up data storage

m Start talking about understanding algorithms
using all our newfound information




