CS1003/1004:
Intro to CS, Spring 2004

Lecture #3: Intro to Programming Languages

Janak ] Parekh
janak@cs.columbia.edu

Administrivia

Buy those textbooks — the Papyrus guy is after me!
m Third TA
m Labs start this week
m Section 2 for 1114 has been moved & increased to 40 students
m Room is a little hard to get to — see instructions on the class website
m Labs are more recitations than labs per se
m Consolidation?
m At least one set of OH in 251 ET
Register for the webboard
AcIS training sessions
Office hours
Who hasn’t registered for a lab?

Agenda

m Finish up UNIX tutorial, talk about HW#0
m Segue into programming

m What exactly does the code do, and why?

m General programming concepts you need to know
m HW#1 to be released this week

m Programming is very easy, and very short: more a
piggyback off of HW#0 than anything else

m Check the website

m You’ve got plenty of time, so relax




UNIX redux

m filename~: not the same thing as ~/filename

m The latter is a “backup” file generated by editors like
emacs

m Files in UNIX are case-sensitive

m HelloWorld.java vs. helloworld.java vs
HELLOWORLD. java

m “cd” by itself is equivalent to “cd ~” ot “cd ~/”

m However, ~/ lets you reference files/directories
absolutely as well, which cd doesn’t

UNIX (II)

m Two sets of files: those on the server vs. on your
computer
m Use FTP to move things back and forth. ..

m Other questions from last time?

So, what to do for HW#0?

m Not freak out
m Let’s do it right now, step by step
m Please ask me questions now if you don’t get it...
m Steps:
m Get HelloWotld.java or hello.c onto CUNIX

account
m Go into CUNIX and run compiler

® Run the code

m What does the code mean?




What does the code mean?

public class HelloWorld { Class declarati
public static void main(String[] args) { <« Main_function
Java System.out.println(“Hello world!”); declaration
} Print statement
} (function call)

#include <stdio.h> Preprocessor
int main() { / / statement
c printf(“Hello world!\n");

¥

Why do we program this way?

m A machine generally processes very primitive
calculator-like instructions:
m “Get first number from memory”
m “Get second number from memory”
m “Add the two numbers”
m “Store the results back in memory”
m All of this is in binary code (machine language)

m An “operation” might be
01110010100101001001010100010101

m We'll learn how this works later
m In short: yuck!

One step up

m Instead of using hard-to-read machine language,
use textual representations
u LD R1, x (load the valne of X into R1 in the CPU)
=mILDR2y
= ADD R0, R1, R2
m ctc.
m _Agsembly language: considered “second-level”
language
m Still really annoying: what we want is “x +y”




3rd-generation languages

m Started in the 50s/60s with FORTRAN and COBOL
m Idea: take a higher-level description of what we want to
do, and let the computer #ransiate it into the machine

language as specified before

m Called compiler because it might take a single high-level
command, and compile a sequence of low-level
commands

m Input high-level language as text, store binary commands in
excecutable file

m Alternative: zuferpret commands on the fly and issue

low-level statements to the processor (BASIC does this)

m Cis compiled; Java between compiled and interpreted

4th-generation languages

m Very high-level languages; historically intended
for user-friendliness

m Many “application-specific” languages
m Matlab might be construed as one

m Rapid development tools (database languages, Visual
Basic, etc.)

m Tends to do a lot of the work #zself

m We'll focus on 3*-generation languages in this
course; skills can be used in 4GLs

Different kinds of 3GLs

m C and Java atre procedural ot imperative languages
m You define procedures, ot sets of steps, to solve
m Java is also considered an object-oriented language
m Not the only way to program
m Declarative programming: you declare “facts”: Excel
m Functional programming: you develop “functions”, and then
build them up; very similar to a set of equations
m Won’t look at these, although there is some conceptual
overlap
m Object-oriented programming: model on top of the
others that specify how to organize information and
code; we’ll talk about this later




Elements of procedural programming

Procedure declaration

m Mathematical function is a decent model, actually

m What are the inputs?

m What are the outputs?
Declarative statements: define terminology to be used later in the
program
Imperative statements: actually perform actions related to what
we want
In C and Java, each declarative/imperative statement must end
with a semicolon

Comments: not actually processed; merely for human readability

General model of procedural
programming

Get some information from user

Process the information

Give the user some results

How does Hello World follow this model?

m Input: we don’t need anything: we already know what we’re
going to output

m Process: nothing to process, since we already know the
output

m Results: print out “Hello world!”

Some other simple examples. ..

Compiling

The compiler takes the source code you write in Zext

Jform and produces binary output

As it goes along, it checks your soutce for syntax errors
m Errors may be cryptic at times

m There are errors which the compiler won’t be able to detect
(semantic errors)

m If there are no errors, it spits output, and quits

m You can then run your program on the machine

m For Java, must run through an interpreter
m For C, it’s machine code: just run it!




