CS1003/1004:
Intro to CS, Spring 2004

Lecture #1: Introduction

Janak J Parekh
janak@cs.columbia.edu

What is this class?

= An introduction to Computer Science

m Two required components:

m Weekly lecture covering the #heory behind CS,
common to both languages

m Weekly lab covering a programming language,
different one for each language
m “Guinea pig” format
m Prerequisites: basic computer skills

m Which language is “better”?

Basic information

m Instructor: Janak] Parekh
(janak@cs.columbia.edu)
m Call me Janak, please
m 9 year at Columbia (in various capacities)
m OH: to be finalized once we get all our TAs

m Class website:
http://www.cs.columbia.edu/~janak/cs10034
m Make sure to check it regularly
m Still setting up webboard and other sections. ..

Lab information

m C lab taught by T'As Suhit Gupta
(suhit@gcs.columbia.edu) and Java lab by
Maryam Kamvar (mkamvar@cs.columbia.edu)

m Please register by end-of-week if possible

m Difficulty in scheduling labs: who has a problem?

m Exception for this first week oz/y: no labs this

week

m Instead, UNIX tutortial in this room this Thursday,
11-12:15pm

Textbooks

= Multiple textbooks

m Brookshear, “Computer Science: An Ovetview”, 7%
Ed. required for theory

m QOualline, “Practical C Programming”, 3" Ed.,
required for C lab

m Bishop, “Java Gently”, 3" Ed., required for Java lab
m Everyone must buy two textbooks (sorry!)

m Books can be obtained from Papyrus, SW 114t
& Broadway; Amazon links & ISBN on website

Course structure

® 6 homeworks, 25 points each = 150 points
m Roughly every 2 weeks
m 50 point midterm, 100-point final (open-book)
m Class participation (see next slide)
m In other words, homeworks are most important
component of class

m Learning programming is useless unless you actually
do it hands-on

Class participation and attendance

m Attendance is expected; participation is
beneficial
m | won’t take attendance, but the TAs might
informally
m Participation is useful for your grade at the end of
the semester...
m If you miss class and/ot lab, you’re expected to
catch up

m I’ll post slides and reading assignments to the
schedule page to help

Homeworks

m Will consist of written and programming parts
m Programming part will be submitted online
m Programming to be done on CUNIX (or at least
tested there)
m Late policy: you are given 3 grace days during
the semester
m A late day is exactly 24 hours
m Can use up to two on any individual homework

m After late days used up, late submissions will #of be
accepted

Homework 0

m It’s up

m Basically, get your CUNIX account and make
sure you can log into it
m Sce if you can compile code

= Not to be submitted

m Thursday tutorial will cover most of these topics

Cheating

m Plagiarism and cheating: unacceptable
m You're expected to do homeworks by yourself
m Rest assured I have electronic tools to catch
plagiarizers
m | had five students last semester
m Renaming variables, etc. doesn’t help
m Results: instant zero on assignment, likely
referral to dean
m Columbia takes dishonesty very seriously

m I’d much rather you come to me or the TAs for help

Feedback

m This is a “guinea-pig” course: I’'m open to
suggestions

m] can’t promise I'll make your dreams come true,
but I will take any constructive feedback
seriously

m Not just template-speak: ask my students from last
semester

® I’m here to help you succeed!

Poll time!

m School
m CC:6
m SEAS: 60
m GS: 4
m Other: 7
m Year
m Freshman: 15
m Sophomore: 15
m Junior: 5
m Senior: 7
m Masters of later: 6

Poll (II)

m Have you programmed before?
= No: 50
m Yes (BASIC, VB): 6
m Yes (C, C++, C#, Java): 4
= Have you used...
m UNIX: 7
= Windows command prompt: 10
m You’re taking this class...
m Because you want to: 15
m Because you have to: 40

What is Computer Science?

What is Computer Science?

m [like this one best: “The systematic study of
algorithmic processes that describe and
transform information: their theory, analysis,
design, efficiency, implementation, and
application.”

m “Information age”: we’re presented with tons of
information, and need tools to help organize it and
manipulate it.

Who cares?

“I’m taking this class because I have to know how to
write code.”

“I’'m taking this class because my advisor said I have to

and I need an A.”

m Several reasons:

m Rising importance of computers in the wotld (and for your
job)

m A good coder does ot necessarily make a good programmer
or good computer scientist

m Learning a programming language doesn’t necessarily make a
good coder

m Brainteasers...

So what are we going to do?

w Study algorithms

m An algorithm is a “set of steps that defines how a
task is performed”

m Not necessarily as intuitive as you may think
w Study programs/ software
m A program is machine-compatible representation of
an algorithm, written in a programming language
m Study (the basics of) bardware: how does the
software run?

Abstraction

m While we’re studying all this, maintain the fundamental
principle of abstraction
m What is abstraction?

m http://www.google.com/search?q=define:abstraction

m “Abstraction means ignoring many details in order to focus
on the most important elements of a problem.”

m At any given time, we focus on one aspect of a problem, and
abstract away the details of others

m Lets us build a “big picture” of Computer Science, brick by
brick

Topics we’ll cover

m We'll start with the basics you need to start
programming: language basics, algorithm design

m Then, we’ll take a bottom-up approach to the computer

How is information stored in hardware?

How is information manipulated in hardware?

How do you tell the hardware to manipulate information?

How do you run this software in a reasonable fashion on a
hardware?

m Finally, we’ll look at some interesting directions for
Computer Science
m Al the “future”?

= Computation theory: what makes a computer a computer
from a theoretical perspective?

And in the labs...

m A pragmatic approach to learning the
programming language of your choice

m I'll work hard to synchronize the two parts of
the class, although they won’t always cover the
same topics

m You’re not going to write an operating system!

Let’s start thinking...

= You've got a five quatt jug, a three quart jug, and
a lake. How do you come up with exactly a
gallon of water?

m This is (was?) a brainteaser asked at Microsoft
interviews

How to get a quart

m ’ll model this as (x,y) where x == # of quarts in five-

quart jug, y == # of quarts in three-gallon jug
m 1. Fill three: (0, 3)
m 2. Move three to five: (3, 0)
m 3. Fill three: (3, 3)
m 4. Move (as much as possible) three to five: (5, 1)
m 5. Dump five: (0, 1)
m 6. Move three to five: (1, 0)
m 7. Fill three: (1, 3)
m 8. Move three to five: (4, 0)

Something more pragmatic,
perhaps?

m Given a map of the NYC subway system, design
an algorithm that finds the “optimal route”
between two stations

m OK, this is not #hat easy, and you’re not going to
know enough to do this in this class

m But we can think about it conceptually: got any
ideas?

m http://www.mta.info/nyct/maps/submap.htm

OK, how about something simpler?

m Given 10 numbers, sort them

m Easy, you say?

m Sort 100 numbers

m Sort 1,000 numbers

m Do it fast

Being a good programmer...

m Takes more than knowing how to write code

m [t takes the ability to take a problem and break it
down into small enough steps to write code that
solves it

m [t takes the ability of knowing enough of the
field (and the language) to know what a “step” is

m Hopefully, that’s what you’ll learn this Spring

Before we go any further...

m Let me prove that I, unlike most professors,
know how to program

m All of us know C and Java, so don’t hesitate to ask
for help

m First program: always “Hello, world!”
m We'll go through the details next week...
= I’ll put this code up; try running it for HW#0

Next class

= NO LAB THIS WEEK!

m Next class will be on Thursday, 1/20, 11am-
12:15pm
m UNIX tutorial

