CS W3134: Data
Structures in Java

Lecture #25: The End
12/9/04
Janak] Parekh

Administrivia

m HW#6 due on Monday

m Note duetimes

m Any questions?

m Extra TA office hours planned for Monday, I'll let

you know

m No formal office hours after Monday, although I
should be available for appointments

m Fill out recommendations

m End class

Agenda

m Start final review

RESIGNATION: T evaLumion oF THE SiH

YEAR OME. .

VEAR THREE.

[

Intractable problems

m There are graph (and other!) problems that can’t be
done in any reasonable time (linear, logarithmic,
polynomial) — they’re often exponential time, e.g., X" —
and grow way too quickly

m Considered NP-complete (Non-deterministic
Polynomial)

m Insta-Ph.D.: prove P==NP (or vice-versa)

m Example: traveling salesman problem -- visit all cities
exactly once, and return to starting point, taking
minimum-cost path

m Hamiltonian cycle problem
= N! time!

Java data structures

m Collections (container) API
m Collections and maps
m Collections: Sets, SortedSets and Lists
m Maps: Map and SortedMap
m Implementations:
m Sets: HashSet, TreeSet
m Lists: ArrayList, LinkedList
m Maps: HashMap, TreeMap
m Lots of utility methods
m Sort, shuffle, search, findMax/findMin
m Works with generic “Object”s
m In the real wotld, get comfortable with these — they work well!

Another look at data structures

List Stack | Queue/PQ| Set Map Other

Arrays Yes Yes Both Poorly | Poorly
Linked
Lists Yes Yes Queue | Poorly | Pootly
Expression,
Trees | Pootly BST BST Huffan
Hashing Yes Yes
Heaps Sort PQ

Graphs Many

Selected algorithms

m Sorts

m Comparison-based sort
m Bubble, selection, insertion: O(n?)
m Merge, heap: O(n Ig n)
m Quick: Approximately O(n Ig n)
m Other
m Radix: Approximately O(n log n)
m Topological: O(V+E) { list }; O(V?) { matrix }

Selected graph algorithms

m Unweighted, undirected graphs

m Search/traversal: BFS, DFS

m Spanning tree: BES or DFS and store edges
m Directed graphs

m Topological sort

m Connectivity: Warshall
m Weighted graphs

m Spanning tree: Prim

m Shortest path: Dijkstra (single-source), Floyd (all-soutce)

The Exam

m Similar to midterm, but about 50-75% longer
m What you don’t need to know

m Shellsort

m Red-black trees

m 2-3-4 trees/external storage

m Floyd’s algorithm (too hard to do on the exam)
m What you do need to know

m Pretty much everything else

m Remember, stuff in class — use my slides

m Chapter 15 is a useful overview

What’s next?

m That’s pretty much it slideswise.
m What other topics do you want to review?

m Another session next week?

