CS W3134: Data Structures in Java

Lecture #23: Graphs III
12/2/04
Janak J Parekh

Administrivia
- HW#6 out
 - Test emails will go up today

Agenda
- Graphs cont’d.
Topological sort

- Come up with a legitimate ordering of processing the nodes
- Often useful for partial ordering problems, such as aforementioned course prerequisites
- Result: an order where no vertex y comes before a vertex x where x → y
- There can be multiple correct answers!

Topological sort (II)

- Find a vertex that has no successors, i.e., arrows that point to it
- Look at columns of the adjacency matrix
- Delete that vertex and print it out
- Repeat
- What kinds of graphs doesn’t this work for?
 - Cycles – what happens?
 - “Catch-22” in real life
 - In other words, works on generalized trees (multiple roots, etc.) – DAG

Topological sort (III)

- Complexity again O(V+E)/O(V^2)
- How to find node with no successors?
- How do you delete a node?
Connectivity in directed graphs

- Can’t just do an arbitrary BFS or DFS
 - Connectivity \textit{depends} on starting node, i.e., “what can you reach from node X?”
 - Do DFS from every vertex!
- Alternative: develop \textit{connectivity matrix} from adjacency matrix
 - Transitive closure of adjacency matrix
 - If \(L \rightarrow M \) and \(M \rightarrow N \), \(L \rightarrow N \)

Warshall’s Algorithm

- For all rows \(j \),
 - For all columns \(x \) in row \(j \),
 - If any value \((x,y)\) is 1, then for all rows \(z \) in column \(y \),
 - If \((y,z)\) is 1, then \((x,z)\) should be 1
 - i.e., “transitive closure”

Warshall’s Algorithm (II)

- That’s it!
 - Remember array references are “backwards” \([y][x]\)
- Yes, this actually works in one pass – all the holes are filled
- What’s the complexity of \textit{this} algorithm?
Weighted graphs

- How to represent? Not just 0s and 1s in the adjacency matrix; weight instead
- Example
 - Roadmap!
- Can be directed or undirected

MSTs with weights

- Many possible STs; how do we figure out the minimum?
- Simple idea: grow the tree from one node
 - Pick smallest edge from vertices that we know to nodes not in tree
 - Add edge and corresponding destination vertex to tree
 - Add edges from new vertex to unknown nodes into priority queue
- Picking smallest edges: priority queue
- Applications
 - Minimizing wiring given multiple choices
 - In general, undirected graphs

However...

- If an edge to a destination vertex already exists in PQ, and we find a shorter path, need to replace the existing entry with shorter path
- Simplest way: scan through PQ, see if any such edges exist, remove them, and insert the new one
- Slicker ways of doing it include backpointers from vertices
- By the way, this is called “Prim”
Shortest-path problem

- Given a graph with weighted edges, and a starting vertex, find shortest path to a target
- Dijkstra's algorithm most canonical way of doing it
- So turns out you get shortest paths to all remote vertices from that starting vertex
- Can handle both directed and undirected graphs
 - Produces a directed tree
 - Cannot handle negative weights

Dijkstra’s Algorithm: Basic idea

- Initialize an array of distances from starting node to each vertex – if there doesn’t exist a direct edge to a vertex, consider it at “infinite” distance
- Add the closest node not already in the shortest-path tree
- Update weights based on edges from newest node plus distance from starting to new – and keep track of the node we used to get to that target
- Repeat
- To find a path to a node, go backwards through the parent nodes

Next time

- Continue weighted graphs
- We’re almost there. 😊