
1

CS W3134: Data CS W3134: Data
Structures in JavaStructures in Java

Lecture #23: Graphs IIILecture #23: Graphs III
12/2/0412/2/04

Janak J ParekhJanak J Parekh

AdministriviaAdministrivia
�� HW#6 outHW#6 out

�� Test emails will go up todayTest emails will go up today

AgendaAgenda

�� Graphs contGraphs cont’’d.d.

2

Topological sortTopological sort

�� Come up with a legitimate ordering of Come up with a legitimate ordering of
processing the nodesprocessing the nodes
�� Often useful for Often useful for partial ordering partial ordering problems, such as problems, such as

aforementioned course prerequisitesaforementioned course prerequisites
�� Result: a order where no vertex y comes before a Result: a order where no vertex y comes before a

vertex x where vertex x where xxÆÆyy
�� There can be multiple correct answers!There can be multiple correct answers!

Topological sort (II)Topological sort (II)

�� Find a vertex that has no successors, i.e., arrows Find a vertex that has no successors, i.e., arrows
that point to that point to itit
�� Look at columns of the adjacency matrixLook at columns of the adjacency matrix

�� Delete that vertex and print it outDelete that vertex and print it out
�� RepeatRepeat
�� What kinds of graphs doesnWhat kinds of graphs doesn’’t this work for?t this work for?

�� Cycles Cycles –– what happens?what happens?
�� ““CatchCatch--2222”” in real lifein real life
�� In other words, works on generalized trees (multiple In other words, works on generalized trees (multiple

roots, etc.) roots, etc.) –– DAGDAG

Topological sort (III)Topological sort (III)

�� Complexity again O(V+E)/O(VComplexity again O(V+E)/O(V22))
�� How to find node with no successors?How to find node with no successors?
�� How do you delete a node?How do you delete a node?

3

Connectivity in directed graphsConnectivity in directed graphs

�� CanCan’’t just do an arbitrary BFS or DFSt just do an arbitrary BFS or DFS
�� Connectivity Connectivity depends depends on starting node, i.e., on starting node, i.e., ““what can what can

you reach from node X?you reach from node X?””
�� Do DFS from every vertex!Do DFS from every vertex!

�� Alternative: develop Alternative: develop connectivity matrixconnectivity matrix from from
adjacency matrixadjacency matrix
�� Transitive closureTransitive closure of adjacency matrixof adjacency matrix
�� If L If L ÆÆ M and M M and M ÆÆ N, L N, L ÆÆ NN

WarshallWarshall’’ss AlgorithmAlgorithm

�� For all rows For all rows yy,,
��For all columns For all columns xx in row in row yy,,
��If any value (If any value (x,yx,y) is 1, then for all rows) is 1, then for all rows zz in in

column column yy,,
�� If (If (y,zy,z) is 1, then () is 1, then (x,zx,z) should be 1) should be 1

�� i.e., i.e., ““transitive closuretransitive closure””

WarshallWarshall’’ss Algorithm (II)Algorithm (II)

�� ThatThat’’s it!s it!
�� Remember array references are Remember array references are ““backwardsbackwards”” [[y][xy][x]]

�� Yes, this actually works in one pass Yes, this actually works in one pass –– all the all the
holes are filledholes are filled

�� WhatWhat’’s the complexity of s the complexity of this this algorithm?algorithm?

4

Weighted graphsWeighted graphs

�� How to represent? Not just 0s and 1s in the How to represent? Not just 0s and 1s in the
adjacency matrix; weight insteadadjacency matrix; weight instead

�� ExampleExample
�� Roadmap!Roadmap!

�� Can be directed or undirectedCan be directed or undirected

MSTsMSTs with weightswith weights

�� Many possible Many possible STsSTs; how do we figure out the ; how do we figure out the
minimum?minimum?

�� Simple idea: grow the tree from one nodeSimple idea: grow the tree from one node
�� Pick smallest edge from vertices that we know to nodes not Pick smallest edge from vertices that we know to nodes not

in treein tree
�� Add edge and corresponding destination vertex to treeAdd edge and corresponding destination vertex to tree
�� Add edges from new vertex to unknown nodes into priority Add edges from new vertex to unknown nodes into priority

queuequeue
�� Picking smallest edges: priority queuePicking smallest edges: priority queue
�� ApplicationsApplications

�� Minimizing wiring given multiple choicesMinimizing wiring given multiple choices
�� In general, In general, undirectedundirected graphsgraphs

HoweverHowever……

�� If an edge to a destination vertex already exists If an edge to a destination vertex already exists
in PQ, and we find a shorter path, need to in PQ, and we find a shorter path, need to replacereplace
the existing entry with shorter paththe existing entry with shorter path
�� Simplest way: scan through PQ, see if any such Simplest way: scan through PQ, see if any such

edges exist, remove them, and insert the new oneedges exist, remove them, and insert the new one
�� Slicker ways of doing it include Slicker ways of doing it include backpointersbackpointers from from

verticesvertices

�� By the way, this is called By the way, this is called ““PrimPrim””

5

ShortestShortest--path problempath problem

�� Given a graph with weighted edges, and a starting Given a graph with weighted edges, and a starting
vertex, find shortest path to a targetvertex, find shortest path to a target

�� DijkstraDijkstra’’ss algorithm most canonical way of doing italgorithm most canonical way of doing it
�� So turns out you get shortest paths to all remote So turns out you get shortest paths to all remote

vertices from that starting vertexvertices from that starting vertex
�� Can handle both directed and undirected graphsCan handle both directed and undirected graphs

�� Produces a directed treeProduces a directed tree

�� CannotCannot handle negative weightshandle negative weights

DijkstraDijkstra’’ss Algorithm: Basic ideaAlgorithm: Basic idea

�� Initialize an array of distances from starting node to Initialize an array of distances from starting node to
each vertex each vertex –– if there doesnif there doesn’’t exist a direct edge to a t exist a direct edge to a
vertex, consider it at vertex, consider it at ““infiniteinfinite”” distancedistance

�� Add the closest node not already in the shortestAdd the closest node not already in the shortest--path path
treetree

�� Update weights based on edges from newest node plus Update weights based on edges from newest node plus
distance from starting to new distance from starting to new –– and keep track of the and keep track of the
node we used to get to that targetnode we used to get to that target

�� RepeatRepeat
�� To find a path to a node, go backwards through the To find a path to a node, go backwards through the

parent nodesparent nodes

Next timeNext time

�� Continue weighted graphsContinue weighted graphs
�� WeWe’’re almost there. re almost there. ☺☺

