CS W3134: Data
Structures in Java

Lecture #23: Graphs 111
12/2/04
Janak ] Parekh

Administrivia
m HW#H6 out

m Test emails will go up today

Agenda

m Graphs cont’d.




Topological sort

m Come up with a legitimate ordering of
processing the nodes
m Often useful for partial ordering problems, such as
aforementioned course prerequisites

m Result: a order where no vertex y comes before a
vertex x where x>y

m There can be multiple correct answers!

Topological sort (IT)

m Find a vertex that has no successors, i.e., arrows
that point to 7
m Look at columns of the adjacency matrix
m Delete that vertex and print it out
m Repeat
m What kinds of graphs doesn’t this work for?
m Cycles — what happens?
m “Catch-22” in real life

m In other words, works on generalized trees (multiple
roots, etc.) — DAG

Topological sort (IIT)

m Complexity again O(V+E)/O(V?)
m How to find node with no successors?

= How do you delete a node?




Connectivity in directed graphs

m Can’t just do an arbitrary BFS or DFS

m Connectivity depends on starting node, i.e., “what can
you reach from node X?”

m Do DFS from every vertex!
m Alternative: develop connectivity matrix from
adjacency matrix
u Transitive closure of adjacency matrix
mIfL>MandM > N,L>N

Warshall’s Algorithm

m For all rows ,

m For all columns x in row y,

mlf any value (x,y) is 1, then for all rows gin
column y,
mIf (y,z) is 1, then (x,z) should be 1

mi.c., “transitive closure”

Warshall’s Algorithm (II)

m That’s it!
m Remember array references are “backwards” [y][x]

m Yes, this actually works in one pass — all the
holes are filled

m What'’s the complexity of #his algorithm?




Weighted graphs

m How to represent? Not just Os and 1s in the
adjacency matrix; weight instead

m Example
m Roadmap!

m Can be directed or undirected

MST's with weights

m Many possible ST's; how do we figure out the
minimum?
m Simple idea: grow the tree from one node

m Pick smallest edge from vertices that we know to nodes not
in tree

m Add edge and corresponding destination vertex to tree
m Add edges from new vertex to unknown nodes into priority
queue
m Picking smallest edges: priority queue
m Applications
m Minimizing wiring given multiple choices
m In general, undirected graphs

Howevetr...

m [f an edge to a destination vertex already exists
in PQ, and we find a shorter path, need to replace
the existing entry with shorter path

m Simplest way: scan through PQ, see if any such
edges exist, remove them, and insert the new one
m Slicker ways of doing it include backpointers from

vertices

m By the way, this is called “Prim”




Shortest-path problem

m Given a graph with weighted edges, and a starting
vertex, find shortest path to a target

m Dijkstra’s algorithm most canonical way of doing it
m So turns out you get shortest paths to all remote
vertices from that starting vertex
m Can handle both directed and undirected graphs
m Produces a directed tree

m Cannot handle negative weights

Dijkstra’s Algorithm: Basic idea

m Initialize an array of distances from starting node to
each vertex — if there doesn’t exist a direct edge to a
vertex, consider it at “infinite” distance

m Add the closest node not already in the shortest-path
tree

m Update weights based on edges from newest node plus
distance from starting to new — and keep track of the
node we used to get to that target

m Repeat

m To find a path to a node, go backwards through the
parent nodes

Next time

m Continue weighted graphs

m We're almost there. ©




