CS W3134: Data Structures in Java
Lecture #22: Graphs II
11/30/04
Janak J Parekh

Administrivia
- Alternate exam time?
- HW#5 due now
- HW#6 out today
 - Will be due Monday, 5pm right before reading week begins
 - Let’s talk about the programming now

Agenda
- Graphs cont’d.
Directed graphs

- As earlier mentioned, useful for situations where we need to model “one-way” information
 - Streets
 - Trees are a subclass of directed graphs
 - Book: course prerequisites

Topological sort

- Come up with a legitimate ordering of processing the nodes
 - Often useful for partial ordering problems, such as aforementioned course prerequisites
 - Result: a order where no vertex y comes before a vertex x where x→y
 - There can be multiple correct answers!

Topological sort (II)

- Find a vertex that has no successors, i.e., arrows that point to it
 - Look at columns of the adjacency matrix
- Delete that vertex and print it out
- Repeat
- What kinds of graphs doesn’t this work for?
 - Cycles – what happens?
 - “Catch-22” in real life
 - In other words, works on generalized trees (multiple roots, etc.) – DAG
Topological sort (III)

- Complexity again $O(V+E)/O(V^2)$
- How to find node with no successors?
- How do you delete a node?

Connectivity in directed graphs

- Can’t just do an arbitrary BFS or DFS
 - Connectivity depends on starting node, i.e., “what can you reach from node X?”
 - Do DFS from every vertex!
- Alternative: develop connectivity matrix from adjacency matrix
 - Transitive closure of adjacency matrix
 - If $L \rightarrow M$ and $M \rightarrow N$, $L \rightarrow N$

Warshall’s Algorithm

- For all rows j,
 - For all columns x in row j,
 - If any value (x,y) is 1, then for all rows z in column y,
 - If (y,z) is 1, then (x,z) should be 1
- i.e., “transitive closure”
Warshall’s Algorithm (II)
- That’s it!
 - Remember array references are “backwards” [y][x]
- Yes, this actually works in one pass – all the holes are filled
- What’s the complexity of this algorithm?

Weighted graphs
- How to represent? Not just 0s and 1s in the adjacency matrix; weight instead
- Example
 - Roadmap!
- Can be directed or undirected

Next time
- Continue weighted graphs
- We’re almost there. 😊