CS W3134: Data Structures in Java
Lecture #21: Graphs I
11/23/04
Janak J Parekh

Administrivia
- Alternate exam time?

Agenda
- Finish heaps
 - Let’s look at the book’s code briefly
- Graphs
 - Last data structure
What are graphs?

- Linked list :: trees → trees :: graphs
- In other words, we no longer limit the number of children each node may have, and we don’t forbid loops (sometimes!)
- Examples?
 - Bridges of Konigsburg (p. 619)
 - Solution: vertices of odd degree make it impossible
 - Foundation of graph theory (1736)

Definitions

- Adjacency
- Path
 - Multiple definitions ✔
- Connected graph
- Directed graph
- Weighted graph
 - These two come later!

Representing a graph

- The OO way
- The canonical (and book) way
 - Adjacency matrix
 - I lied – we will use 2D matrices
 - Adjacency list
- Advantages and disadvantages?
- Book => separate vertex class
- For some reason, the book does it the latter
Searching graphs?

- Goal: find connectivity
- Depth-first search
 - Push node on a stack
 - While stack not empty:
 - Peek and get an unvisited adjacent node
 - Visit it (pushing it on the stack)
 - If no adjacent nodes, pop and repeat
- Game searching and branching factor
- Breadth-first search
 - Same process, but queue instead

Complexity of BFS and DFS?

- Optimally, $O(V+E)$ – we visit every vertex a constant number of times and potentially travel every edge a constant number of times
- But this is only for an adjacency list; in an adjacency matrix version, it’s $O(V^2)$ – we scan every row and every column in the adjacency matrix once
- Admittedly inefficient, but we knew that

Minimum spanning trees

- A (minimum) spanning tree is a subgraph with no cycles
 - Different in weighted graphs
 - Remove graph redundancy
 - Useful for many applications
 - Ex: minimize wiring
 - In a minimum spanning tree, $#E = #V - 1$
Computing a MST

- Simple algorithm (p. 644): DFS and record the edges traveled
 - Don’t worry about backtracking
 - Can also use BFS…

Next time

- Directed graphs